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Abstract
As latency-sensitive IoT applications proliferate, edge com-
puting becomes critical to sustaining real-time performance.
Yet, limited edge infrastructure and reliance on costly static
task profiling constrain its potential. This paper presents
fReeLoaders, an IoT ecosystem addressing both challenges
through opportunistic offloading and adaptive scheduling.
fReeLoaders uses nearby idle smart devices to augment edge
availability and uses a deadline-driven reinforcement learn-
ing scheduler to learn task behavior on the fly, eliminating
expensive a priori profiling. Evaluation on real hardware
shows it improves quality of service by 11.4% over a state-of-
the-art profiling scheduler and adapts to dynamic workloads.

CCS Concepts
• Software and its engineering → Scheduling; • Com-
puter systems organization→ Real-time systems; • Net-
works→Cyber-physical networks; •Computingmethod-
ologies→ Reinforcement learning.
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1 Introduction
Advanced Internet of Things (IoT) applications are often
stymied by a lack of accessible compute near end devices.
Applications, such as AR-based cognitive assistance [16]
and smartwatch-based hand-wash detection [25], require
low-latency processing that nearby edge resources, such as
Cloudlets [29], can better provide than more distant cloud
servers [34]. As IoT and AI deployments proliferate, edge
computing becomes essential for sustaining real-time per-
formance [5, 26, 32]. The key challenges lie in scheduling:
selecting optimal edge resources based on QoS and network
conditions [24, 35], and in availability: ensuring accessible
edge services near devices [18, 35]. Inefficiencies in either
dimension can significantly degrade performance and user
experience.

These challenges remain largely unresolved. Existingwork
like HeteroEdge [37] and Kim et al.’s scheduler [19], use pro-
filing to predict execution time and energy on edge machines.
However, the heterogeneity of the IoT—diverse devices, work-
loads, and QoS requirements—makes profiling infeasible at
scale. Each new or modified task necessitates re-profiling
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Figure 1: An overview of the fReeLoaders ecosystem.

across all edge nodes, incurring time and energy costs that
hinder responsiveness. While such expensive profiling may
be acceptable in static real-time systems like avionics, IoT
workloads evolve rapidly, with tasks frequently added, up-
dated, or migrated, rendering traditional schedulers ineffec-
tive. Furthermore, edge service deployment remains sparse.
Many providers have scaled back [9, 22] or discontinued op-
erations [12, 31], limiting coverage and accessibility [20, 21].
Our approach tackles the challenges of limited edge in-

frastructure and inadequate scheduling in heterogeneous,
dynamic IoT environments through a two-pronged design.
First, to reduce reliance on unreliable edge services, we pro-
pose offloading tasks from resource-constrained IoT devices
(e.g., AR/VR headsets, smartwatches) to idle, wall-powered
smart devices in the vicinity (e.g., smart TVs, gaming con-
soles). Such devices offer superior compute, long idle periods,
and stable power sources, making them ideal for opportunis-
tic task execution. Second, we introduce a reinforcement
learning (RL)–based scheduler that learns task performance
on available devices on the fly, eliminating the need for costly
a priori profiling and enabling adaptation to runtime vari-
ability. We implement these ideas in fReeLoaders, an IoT
ecosystem where constrained “offloader” devices send tasks
to nearby “executor” devices, with a central “controller” (e.g.,
a Google Home) orchestrating the process (Figure 1). For
example, a smartwatch performing hand-wash detection can
leverage the GPU of a nearby PlayStation 5 [8]. Leverag-
ing compute in executors eliminates the need for dedicated
infrastructure to handle offloaded tasks.

While prior work explores everyday devices as offloading
targets [11, 19, 33, 37], our contribution lies in eliminating
the need for costly task profiling through a “deadline-driven”,
RL–based scheduler. Traditional real-time schedulers esti-
mate worst-case execution time (WCET) or CPU demand via
profiling [15, 19, 37], incurring significant time and energy
overhead—an issue we quantify in this paper. We replace

a priori profiling with a scheduler that learns task behav-
ior on the fly, aiming for deadline satisfaction rather than
explicit WCET estimation. We leverage the soft real-time
nature of IoT systems [13], allowing the scheduler to tolerate
early deadline misses and learn from repeated task execu-
tions. The approach converges quickly and surpasses static
profiling-based methods on deadline satisfaction and energy
usage while also adapting to changing devices, workloads,
and network conditions.

We demonstrate a prototype implementation and evaluate
its performance, adaptability, and overhead with a testbed
consisting of hardware matching the compute of existing
smart devices. We compare fReeLoaders against a profiling
scheduler, an oracle offline scheduler, and common sched-
uling strategies. fReeLoaders improves QoS by 11.4% over
the state-of-the-art a priori scheduler, adapts to changing
executor host loads and the availability of new hosts, and
can run on hardware matching a commodity smart device.
These results show that fReeLoaders eliminates profiling
overhead and harnesses idle smart device compute to enable
low-latency, energy-efficient applications while addressing
core scheduling and availability challenges.

2 Related Work
Real-time Scheduling. There are existing schedulers de-
signed tominimize energy usage andmeet QoS requirements.
CoGTA [36] allocates social sensing tasks to cooperative
edge nodes, HeteroEdge [37] addresses edge device hetero-
geneity with a uniform resource management interface, and
HEROS [15] is a heuristic-based scheduler for heterogeneous
resources assigningworkloads to capable yet energy-efficient
nodes. Kim et al. [19] provide a cooperative scheduler that
integrates with the OS to assign tasks to idle IoT devices.
However, these approaches rely on a priori task profiling.
fReeLoaders overcomes this with a deadline-driven RL-based
scheduler that learns task performance over time and enables
adaptive, heterogeneity-aware scheduling.
RL-based Scheduling for the Edge. RL-based schedul-

ing has emerged as a solution to edge computing workload
and hardware heterogeneity. Tang et al. [30], Chen et al. [7],
Lu et al. [23], and Alfaikh et al. [6] use variations of RL (e.g.,
deep Q-learning, MADDPG, RL-SARSA) to offload to MEC
servers or cloud data centers. However, these approaches
require a priori profiling, thus not adapting well to newwork-
loads. They also assume constant computing capacity and
evaluate in simulated environments, making it difficult to ac-
count for uncertainty in real-world scenarios. Contrastingly,
fReeLoaders dynamically estimates workloads and comput-
ing capacity without a priori profiling using deep Q-learning.
We also validate the system on a real-world testbed.
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3 System Design
We design fReeLoaders to leverage heterogeneous compute.
The ecosystem benefits offloaders which send workloads to
executors. A controller mediates with an RL-based scheduler.

3.1 Reinforcement Learning Scheduler
The scheduler must navigate uncertainties affecting work-
load execution time and energy usage. There are many kinds
of workloads it must handle, as there are many kinds of
devices that may offload. Also, the static and dynamic char-
acteristics of the compute available to run workloads is
wide-ranging. This overwhelming diversity alongside ever-
changing compute load state, the effect of concurrent work-
loads on performance, updates introducing new and chang-
ing workloads, and more, make profiling intractable. Instead,
because we expect these workloads to repeat, we leverage
RL to address these challenges. An RL agent will have am-
ple opportunity to explore how each workload runs on the
ecosystem’s compute, and continually learn to meet dead-
lines and optimize energy usage.

Meeting deadlines requires knowing one type of workload
from others, current compute resource load, and workload
deadlines. Each type of workload will have different compute
requirements, necessitating an identifier. The deadline re-
flects the workload’s urgency. The load state of each compute
resource informs which resource has computing capacity.
We provide this information to the scheduler, and it selects
a compute resource to execute the workload.

The RL agent gets feedback based on deadline satisfaction
and energy usage (Figure 2a). We prioritize deadline satisfac-
tion to meet application QoS expectations and secondarily
aim for low energy usage. Owners pay the cost of energy us-
age, making energy efficiency a priority. The reward function
yields a positive reward (𝑟 ) between 0 and 1 when meeting
the deadline (𝑡 ≤ 𝑑) and a −1 reward otherwise. The reward
is non-stationary. It depends on where the energy usage of
the latest instance of workload 𝑖’s execution (𝑒) compared
to the most energy used (𝑚𝑖 ) and the least energy used (𝑛𝑖 )
executing the same workload. Because tasks can exhibit a
wide range of energy usage based on their execution time,
we track this on a per-task basis. Mathematically:

𝑟 =

{
(𝑚𝑖 − 𝑒) ÷ (𝑚𝑖 − 𝑛𝑖 ) 𝑡 ≤ 𝑑

−1 𝑡 > 𝑑

3.2 The fReeLoaders Ecosystem
The fReeLoaders ecosystem consists of offloaders which send
tasks to executors through a mediating controller. Tasks are
the unit of offloaded work in the ecosystem. Their code exists
on both offloading devices and executing hosts. Offloaders
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Figure 2: An overview of fReeLoaders.

are constrained devices that benefit from offloading tasks.
Such devices include smartwatches processing fitness data
or sound systems doing speech recognition. Executors run
tasks on behalf of offloaders. They are more computationally
capable than offloaders and have stable energy sources. For
example, smart home assistants, game consoles, and smart
TVs. The controller accepts tasks from offloaders and uses
the RL-based scheduler to assign them to executors.

4 Implementation
The controller and executors run programs to enable task
execution. The controller exposes an server accepting tasks
and assigns them to executors using the scheduler. The con-
troller has a pluggable design, making it easy to swap the
scheduler in use. Executors provide load state (via psutil [28])
and execute tasks as child processes with low priority.

Once an offloader submits a task, the controller and execu-
tor handle the rest of the process. The controller accepts the
task, fetches state from executors, and uses the scheduler to
decide which executor will run the task. The controller sends
the task to the executor via MQTT, and the executor executes
the task immediately. Upon completion or failure, the execu-
tor responds to the controller, providing execution time and
energy usage of the task, as well as its post-execution load
state. Figure 2b gives an overview of the implementation.
We use Chainer [1] to implement the Deep Q-Learning

RL model. It consists of 43 inputs (32 for the vectorized task
ID, one for the deadline, and ten for executor loads), three
hidden layers, and ten outputs, each corresponding to an
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Figure 3: Evaluation devices (controller in red).

Device CPU RAM
Lenovo ThinkStation P320 Intel Core i7-7700 16 GB

Dell XPS 8900 Intel Core i7-6700K 16 GB
NVIDIA Jetson TX2 ARM Cortex-A57 8 GB
NVIDIA Jetson Nano ARM Cortex-A57 4 GB
Raspberry Pi 4B (×5) ARM Cortex-A72 4 GB
Raspberry Pi 3A+ (×2) ARM Cortex-A53 4 GB
Table 1: Specifications of evaluation devices.

Task Information Met Deadline on Executors?

Task Type ID Deadline Nano Pi3 Pi4 TX2 PC

0 890 ms ✓ ✓ ✓ ✓ ✓
Loop

9 5,112 ms ✓ ✓ ✓ ✓ ✓

10 1,614 ms ✗ ✗ ✓ ✓ ✓
Matrix Mult.

19 9,859 ms ✗ ✗ ✓ ✓ ✓

20 1,189 ms ✗ ✓ ✓ ✗ ✓
FFT

29 7,411 ms ✗ ✗ ✓ ✓ ✓

30 807 ms ✗ ✗ ✓ ✗ ✓
Hum. Act. Rec.

39 3,873 ms ✗ ✗ ✗ ✗ ✓

40 5,709 ms ✗ ✗ ✗ ✗ ✓
Obj. Det.

49 6,763 ms ✗ ✗ ✗ ✗ ✓

50 4,829 ms ✓ ✓ ✓ ✓ ✓
Room Class.

59 7,949 ms ✓ ✓ ✓ ✓ ✓

Table 2: Evaluation tasks (only lightest and heaviest).

executor. We configure the model to train for five epochs
using a batch of ten samples randomly sampled from a replay
memory of the past 50 experiences and a discount rate of 0.1.
Action selection uses a softmax temperature of 0.25.

5 Evaluation
We compare fReeLoaders with a variety of other schedulers
and also test its adaptability and overheads.

5.1 Evaluation Setup
The evaluation uses a real-world testbed. The controller runs
on a desktop PC. We submit tasks with a script to control
experiment conditions. For each evaluation, we randomly
offload the same sequence of tasks at a rate of 15 tasks per
minute. All executors connect via Wi-Fi (Figure 3, Table 1).
While using commercial smart devices is infeasible, this hard-
ware provides a good match and presents heterogeneity in
CPU architecture, computing power, and network speeds.
We group the schedulers in our evaluation into three

categories. Static, non-profiling schedulers: random ran-
domly assigns tasks, load balancer assigns a task to the
least-loaded executor, and performance-weighted round-
robin sequentially assigns a fixed number of tasks to ex-
ecutors relative to their Geekbench [14] score. Feedback-
based, non-profiling schedulers: energy-priority starts with
the most efficient executor and then tries more powerful
ones, performance-priority starts with the most capa-
ble executor and then tries more energy-efficient ones, and
fReeLoaders which uses the RL model to schedule, starting
with an untrained model for each experiment. The profiling
HEROS [15] scheduler uses the authors’ parameter recom-
mendations (𝛼 = 110, 𝛽 = 0.9, and 𝛾 = 1.2) and profiling data
collected with perf [2]. We also compare against the profiling
HeteroEdge [37] scheduler. We exclude the scheduler by
Kim et al. [19], as it must run as an OS scheduler.

We use six types of tasks (Table 2) with ten variants, for a
total of 60 tasks based on real workloads. Loop computes a
sum in a loop,matrix multiplication multiplies two matri-
ces, Fast Fourier Transform computes an FFT, human ac-
tivity recognition uses a neural network for gesture recog-
nition, object detection uses YOLO [27] to classify objects
in an image, and room classification uses SqueezeNet [17]
to classify a room. We classify the tasks into categories: “lax”
(loop, room classification), “average” (FFT, matrix multiplica-
tion), and “strict” (human activity recognition, object detec-
tion), depending on the context the task would run in and
use this to set contextually-appropriate deadlines.
We track energy usage with per-device power curves de-

rived from measurements at several load values. Executors
track usage during each experiment to model energy usage.

5.2 Comparison to a Profiling Scheduler
We compare the performance of fReeLoaders to HEROS using
profiling data collected under different scenarios. We submit
the same random sequence of 4,000 tasks. Figure 4 show DSR
for the first 500 offloads, after which DSR plateaus. We pro-
vide HEROS with profiling data from several representative
profiling scenarios.TX2/PC task profiles uses task profiling
data from a single executor, matching an application devel-
oper profiling their application but not having access to all
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Figure 5: Energy and time costs of profiling approaches.

possible hardware. Loop/obj. det. task as HW benchmark
benchmarks executor performance with a single task, match-
ing a hardware designer providing performance data on a
fixed workload. Per-task, per-executor profile ×N uses
per-task, per-executor profiling data collected over N runs
of each task on each executor, matching in-situ profiling.
The fReeLoaders scheduler learns and improves over all

profiling variants by 150 offloads, showing that it does adapt
to meet task deadlines. It also optimizes for energy usage,
Only “PC profile” and “TX2 profile” consume less energy.
However, their DSRs (60.24%, 62.83%) are not competitive
with fReeLoaders (96.82%). The best-performing HEROS vari-
ants achieve competitive DSRs at the expense of higher run-
time energy (obj. det. benchmark, 84.15%) or higher profiling
energy cost (profile ×10, 86.9%).
Using a deadline-driven RL-based scheduler rather than

devising evermore complex profiling is effective. HEROS’
profiling data lacks important sources of variability, such as
the effect of concurrent workloads. MIPS on the TX2 running
thematrix task falls 13.7%when runwith the object detection
task. Such impacts cause its DSR to suffer. The fReeLoaders
scheduler learns on-the-fly and outperforms an existing state-
of-the-art scheduler in DSR while also optimizing energy
usage (Figure 5). This makes it suitable for handling IoT
workloads in an ecosystem subject to changing workloads.
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Figure 6: Energy usage vs. DSR of schedulers.

device role load profile
Nano smart doorbell ephemeral, 4 / 75 offloads
Pi 3 air quality sensor base load, 25%
Pi 3 digital frame base load, 5%
Pi 4 smart TV 2 sessions, 166 offloads, 70%
Pi 4 robot vacuum 1 session, 125 offloads, 100%
Pi 4 router base load, 75%
Pi 4 smart camera ephemeral, 8 / 240 offloads
Pi 4 set-top box 2 sessions, 167 offloads, 70%
TX2 voice assistant ephemeral, 8 / 240 offloads
PC game console 1 session, 100%

Table 3: Executor dynamic load profiles.

5.3 Performance with Dedicated Executors
Next, we compare the fReeLoaders scheduler and an en-
semble of common schedulers. Executors only run the as-
signed tasks. We offload the same random sequence of 4,000
tasks to each scheduler and show results in Figure 6a. The
fReeLoaders scheduler (96.8%), performance-priority (98.1%),
and energy-priority (92.0%) attain the best DSR. Performance-
priority performs slightly better but consumesmuchmore en-
ergy than the fReeLoaders scheduler. While energy-priority
uses less energy, it is slow to improve and underperforms
the fReeLoaders scheduler.

5.4 Comparison to an Oracle Scheduler
We evaluate fReeLoaders against an oracle scheduler based
on HeteroEdge [37], which uses a priori profiling and offline
optimization. HeteroEdge models dependent task sets, re-
quiring a separate evaluation. We use a Personalized Fitness
Coaching (PFC) app with three sequential tasks (HAR, FFT,
Object detection) executing across ten devices. The oracle
collects 300 profiling samples (10 offloads × 10 executors ×
3 tasks). We test fReeLoaders with i) FL(0): no training, ii)
FL(30): 30 samples, iii) FL(150): 150 samples, and iv) FL(300):
full profiling equivalent. We measure DSR for parallel PFC
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Figure 7: DSR for jobs of the PFC application. Het-
eroEdge has 300 measurements of profiling fReeLoad-
ers is trained with 0, 30, 150, and 300 measurements.
jobs (Figure 7) and find that fReeLoaders quickly learns and
outperforms HeteroEdge, adapting well under higher load.

5.5 Adaptability of the RL Scheduler
We evaluate fReeLoaders in scenarios of change to gauge its
suitability in leveraging inconstant, hyper-local resources.

5.5.1 Dynamically loaded executors. We evaluate fReeLoad-
ers’s adaptability to dynamic loads of non-dedicated com-
pute by configuring executors to exhibit the load of common
devices (Table 3). We perform 4,000 offloads and show the re-
sults in Figure 6b. All executors exhibit poor performance at
points during the experiment, so statically relying on a single
executor is not possible. The best possible DSR is 93.3%.
The fReeLoaders scheduler achieves 90.67%, outperform-

ing performance-priority (89.9%) and using 28.1% less en-
ergy. It outperforms energy-priority (84.6%) by finding suf-
ficient executors more quickly. This evaluation shows that
the fReeLoaders is able to adapt to these dynamics and still
optimize energy usage.

5.5.2 Adding executors. Over time, the user will add devices.
The scheduler must leverage these additions to improve per-
formance. We test the fReeLoaders scheduler’s adaptability
by incrementally adding executors. We offload the same se-
quence of 2,000 tasks in four configurations, totaling to 8,000
offloads. The first configuration is a single Raspberry Pi 4;
then we add four more Raspberry Pi 4s; then we add the
Nano, TX2, and Raspberry Pi 3s; then we add the PC. We
represent a non-existent executor by fixing the load input to
1 and failing a task if the scheduler assigns a task to it.

The fReeLoaders scheduler improves DSRwith each change.
Adding four Raspberry Pi 4s allows improvement from 45.5%
to 61.2%, having all devices except the PC gives a small im-
provement to 63.8%, and adding the PC allows improvement
to 93.5%. This shows that the fReeLoaders scheduler can
adapt to new compute resources to improve its performance.

5.6 Controller Resource Overhead
We run the fReeLoaders controller on the Nano to observe
the feasibility of running the controller on commodity hard-
ware. After ten offloads we record the controller consistently
uses 236 MB of memory. During the offload session, which in-
cludes a single round of training, CPU usage averages 11.10%.
This demonstrates that this unoptimized prototype would
run on devices with 512 MB of RAM, though many home
assistants have 1 GB or more [10].

6 Discussion
Applicability. Building cross-vendor device ecosystems is
difficult due to vendor restrictions and interoperability issues.
But, single-vendor ecosystems (e.g., Samsung, Apple) make
this feasible, enhancing user experience as each device adds
computing power. Also, Thread [4] and Matter [3] standards
can advance cross-vendor interoperability and adoption.
Security and Privacy. fReeLoaders lets users keep data

on devices they control, but further controls would enable
users to limit the executors and offloaders they trust. Linking
devices would allow them to authenticate each other and
limit which devices handle the user’s data. Input data can
remain private from the controller in this way. Multi-tenant
setups would require a revised model or multiple models.

Scalability. Executor loads are inputs to the RLmodel. It is
possible to pre-allocate inputs and outputs (Section 5.5.2) but
increasing the inputs and outputs requires a new model. The
system architecture and the expectation that all executors
install task code makes scaling to large numbers of execu-
tors or tasks difficult. Further research is necessary to make
scaling sustainable; for example, determining at install-time
a subset of executors to install task code.

7 Conclusion
The IoT is replete with applications demanding low latency.
As the IoT expands, devices supporting these applications
will find their way into new environments, making cloud or
edge computing support less practical and requiring that we
find ways to support them regardless of location. fReeLoad-
ers shows how we can leverage hyper-local compute to sup-
port constrained devices. The scheduler adapts to inconstant
computing resources and workloads, forgoing profiling over-
heads. It also sets the foundation for building ecosystems of
devices that interoperate to enable new applications across
the domains that the IoT supports.
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