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Abstract
Multi-tenancy, the co-location of applications on a single device,

increases the utility of embedded systems and lowers deployment

costs. Support for multiple applications has even reached lower-

power battery-powered devices which benefit from modularity and

multitasking, like other computing platforms. But energy remains

a concern for these devices, and multi-tenancy can increase energy

usage as applications execute uncoordinated with each other; their

CPU and peripheral usage wake the device from low-power modes

and collectively increase its active time. To address this, we exploit

the inherent uncertainty in multi-tenant systems and dynamically

shift peripheral activity to increase energy efficiency. Our approach

executes within the OS, requiring no modifications to applications.

We explore policies that trade off energy efficiency and latency

and design one that accommodates latency-sensitive operations by

considering operations to execute ahead of time. Our evaluation

shows our approach outperforms equivalent traditional monolithic

applications.With this approach, low-power embedded systems can

benefit from multi-tenancy without sacrificing energy performance.

CCS Concepts
• Computer systems organization→ Embedded and cyber-
physical systems; Embedded software; Sensors and actuators; •
Software and its engineering→ Scheduling; Power manage-
ment.
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1 Introduction
Embedded hardware now supports multi-tenancy: the co-location

of multiple, distinct software applications on a single device. Multi-

tenant embedded systems support applications in wearables and the

Internet-of-Things, including tracking personal health and fitness

activity [7, 8], providing city-scale sensing [10], and monitoring

building infrastructure [11]. Multi-tenant systems allow the sys-

tem designer (responsible for integrating the hardware and the

embedded OS) and application developers to be completely distinct

entities. Multi-tenant systems enable increased flexibility, lowered

deployment costs, and expanded utility over single-application de-

vices. For example, a user can install applications and extend the

functionality of their smart wearable device, or a local government

may extend a traffic light sensors to assess the city’s busiest routes,

obviating the need for new hardware. Like conventional comput-

ers embedded hardware is fulfilling more general-purpose roles.

The many sensors and accelerators available on-chip make them

suitable as multi-purpose devices.
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Figure 1: Energy usage variation of a device running appli-
cations. The applications sense light, sample with the ADC,
refresh a display, and encrypt data. Consumption is relative
to the light-sensing app. Working independently, these appli-
cations rarely align their execution, yielding a high median
energy consumption.

However, energy remains a leading concern for these systems.

Careful energy management is critical to ensure sustainable opera-

tion on limited energy budgets. Low-power “sleep” modes enable

these devices to power off components and stop clocks, a significant

contribution to energy consumption [14], vastly reducing power

draw. Traditionally, embedded systems fit the purpose of a single

application, allowing a single developer to tune the application and

control energy usage. In multi-tenant systems however, multiple

applications work concurrently and independently. This compli-

cates energy consumption behavior of the device as applications

execute uncoordinated with respect to each others’ activity.

Applications make use of the peripherals available in embedded

hardware to sense, actuate, and process data. Their uncoordinated

activity keeps the device active in disjoint spans of time, often for

a single application. Even a small set of simple applications can

exhibit a wide range of energy consumption, as Fig. 1 illustrates.

There is a high baseline energy cost for a device to be active, so ac-

tive time is a large factor in energy usage. Though a CPU scheduler

can control application code execution, applications can initiate

peripheral operations, which run independent of the CPU. Just like

the CPU, peripherals require clocks to function, meaning applica-

tions can indirectly inhibit low-power modes beyond the control of

a CPU scheduler. The CPU scheduler alone is not sufficient to con-

trol applications’ energy usage, leaving unpredictability in energy

consumption. Bringing coordination to applications in multi-tenant

systems will not only allow these devices to last longer but also

allow them to do more with the energy they have.
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To control energy usage arising from peripheral activity, we

introduce a batching system designed specifically to control periph-

eral operations. Batching peripheral operations makes it possible to

parallelize their execution, thereby reducing the amount of time the

system is active for only a single application or peripheral. However,

batching as an energy management technique presents challenges.

Most obvious of them is the additional latency it imposes on appli-

cations. Applications will experience delays in starting peripheral

operations and in receiving resulting data or notifications from

interrupts. It is also necessary to define a policy that determines

when to withhold operations from execution and when to execute

them. This affects the system’s responsiveness as well as its energy

efficiency. These concerns run counter to each other; a responsive

policy will batch less effectively and consume more energy, but an

energy-conservative policy will be less responsive.

To provide efficient, responsive batching to embedded systems,

we present a batching framework that integrates with the embedded

operating system (OS) and a batching policy that takes advantage

of the periodic nature of applications to execute latency-sensitive

operations efficiently. Though individual applications may batch

their own operations themselves, batching at the system level en-

ables considering multiple applications’ activity for batching. An

important benefit to this approach is that applications are unaware

that batching is happening. By making it entirely a concern of the

underlying system, application code need not change to work with

the batching system.

The batching system aggregates peripheral operations and exe-

cutes them according to the policy. The batching policy determines

when to execute on peripheral operations it accumulates. Given

the importance of low latency to some applications, we design a

batching policy that gives special consideration to latency-sensitive

operations and maintains energy efficiency when responding to un-

predictable interrupts. This policy identifies peripheral operations

as latency-sensitive, batchable, or pre-executable and maintains

awareness of upcoming operations to execute some ahead of time

with latency-sensitive operations to create ad-hoc batches.

We evaluate the batching system in terms of energy efficiency,

latency, and overheads across several application setups. It achieves

better efficiency than equivalent, monolithic applications and a

state-of-the-art harmonizing scheduler while also accommodating

latency-sensitive operations. The evaluations also characterize the

effect of the ahead-of-time batching policy on energy efficiency to

discern the conditions in which it is and is not effective.

2 Related Work
Energy management is a prominent topic in computing. This work

expands on existing work by highlighting the importance of pe-

ripherals to energy usage in multi-tenant embedded systems and

presents a scheduler to reliably control their energy usage. Here we

examine related work in scheduling for energy efficiency in low-

power embedded devices, the application of batching for energy

efficiency, and managing peripheral hardware energy usage.

Existing literature places much focus on CPU-only workloads.

Most prominent are techniques that use DVFS to adjust power

to the CPU [20, 24]. Niu et al. present a peripheral-aware DVS

algorithm [19], but it uses peripheral power state to determine

whether to run a job. In this work, we focus on manipulating the

timing of peripheral operations to reduce energy usage.

The benefit of batching to energy efficiency is well-known. In [15],

the authors suggest it as an effective technique for power-hungry

components. Davies et al. present a scheduling algorithm for bal-

ancing energy and flow time [13], but it is an offline algorithm and

requires the number of batches to create as input. Gupta et al. batch

data transmissions from multiple applications to reduce energy

usage in [16], but it is only scoped to radio transmissions. Rowe et

al. present the energy-saving rate harmonic scheduler [21, 22] to

harmonize the execution of periodic tasks to reduce energy usage

but focus only on the CPU and do not consider aperiodic operations.

We use batching to improve the execution of peripheral operations,

but the batching policy we present also executes latency-sensitive

operations without delay while maintaining efficiency.

There are also works in mobile computing that target efficiently

using power-hungry peripherals like GPS and cell modems. APE [18]

is a middleware that allows an application developer to write rules

that the OS uses to decide how to run specific operations with

energy-intensive components. Cinder [23] allows a user to budget

energy between apps, and apps pool their energy to run energy-

expensive operations. These techniques that may be applicable in

the low-power embedded domain, but in this work, we develop

a batch peripheral scheduling system for multi-tenant embedded

systems that does not require developers to specially adapt their

software to work on the platform.

3 Modeling and Opportunity
To understand the efficacy of batching, we build a mathematical

model of batch peripheral scheduling and discuss results of a moti-

vational experiment. The model shows the potential of controlled

peripheral operation scheduling, and our experiment results show

the additional efficiency possible with system-level batching.

3.1 Modeling batch peripheral scheduling
To understand the theoretical limits of energy efficiency through

batching, we model the energy consumption of executing opera-

tionswith andwithout batching.Modeling batch operation provides

an approximate upper bound on energy efficiency, reveals thresh-

olds at which batching becomes unhelpful, and indicates whether

an implementation functions correctly. Our mathematical model

consists of the following:

𝐸
idle

= 𝑃
idle
× 𝑡

idle
(1)

𝐸
marginal

=

𝑁∑︁
𝑖=0

𝑃
periph. i

× 𝑡
periph. i active

(2)

𝐸
baseline

= 𝑃
base
×

𝑁∑︁
𝑖=1

𝑡
periph. i active

(3)

𝐸
batching

= 𝑃𝑏𝑎𝑠𝑒 ×max(𝑇
periph. active

) (4)

𝐹 = 1 −
𝐸
batching

+ 𝐸
marginal

+ 𝐸
idle

𝐸
baseline

+ 𝐸
marginal

+ 𝐸
idle

(5)

Table 1 lists the model variables. The model considers a span of time

during which 𝑁 peripherals execute operations. Each peripheral

operation executes for some duration (𝑡
periph. i active

) and causes the
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notation description
𝐸
idle

energy consumed during low-power operation

𝐸
marginal

peripheral’s contribution to energy usage

𝑃
idle

power of low-power operation

𝑡
idle

time spent in low-power mode

𝑃
periph. i

power of peripheral 𝑖

𝑡
periph. i active

duration peripheral 𝑖 is active

𝐸
baseline

energy consumed without batching

𝐸
batching

energy consumed with batching

𝑃
base

device active power

𝑇
periph. active

set of all peripherals’ active durations

𝐹 energy consumption reduction

Table 1: List of energy efficiency model variables.

peripheral to consume energy (𝑃
periph. i

). The total consumption of

that duration is the sum of three values. Two of the three are shared

between the batching and non-batching cases: energy consumption

in a low-power state (𝐸
idle

, equation 1) and energy consumption to

solely power a peripheral (𝐸
marginal

, equation 2).

Energy consumption between the batching and non-batching

cases differs due to the concurrent execution of multiple periph-

eral operations, reducing the total time the system is active. The

non-batching case uses 𝐸
baseline

to compute energy consumption,

modeling peripheral operations that execute in disjoint spans of

time. The batching case uses 𝐸
batching

to compute energy consump-

tion, modeling a system that concurrently executes all peripheral

operations and remains active only for as long as the longest periph-

eral operation to execute. We obtain the theoretical reduction in

energy by comparing the total energy consumption of the batching

and non-batching cases (𝐹 , equation 5).

The model estimates energy efficiency of batching with some

assumptions that allow the model to remain simple. It assumes that

peripherals start at the same instant which guarantees the device

is active no longer than the longest operation. Actual start times

are separated by a few microseconds, which is a relatively small

fraction of time compared to the tens or hundreds of milliseconds

that peripheral operations typically last. Secondly, it represents

peripheral operations as continuous events with a single start and

stop time although some operations may consist of bursty activity

and exhibit a non-uniform power trace. Also, it does not consider

the energy and time spent shifting between active and low-power

states. These transitions take little time, on the order of single-digit

microseconds, to complete. Nevertheless, the model is useful for

analyzing the potential of batch peripheral scheduling.

3.2 Application- and system-level batching
To validate the model and reveal real-world energy efficiency gain,

we performed a preliminary study. We ran an application perform-

ing four tasks: transmitting over UART, encrypting with an AES

accelerator, querying a temperature sensor, and sampling with the

ADC. We ran the application on Tock OS [17] on the Hail [1] devel-

opment board and measured energy consumption. The application

executed each task 100 times over 30 seconds, batched in three ways:

all four tasks, two groups of two tasks (ADC + AES, UART + temp.),

and one group of three tasks with one isolated task (ADC task
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Figure 2: Reduction in energy consumption by batching pe-
ripheral activity. Application-level batching batches within
application code, and system-level batching works within
the embedded OS. Each pattern is a tuple describing how
many operations are in each batch. Executing batches at the
system level further improves efficiency.

alone). A small delay separated each batch. In this case, batching is

happening at the application level.

We then modified Tock to perform batching at the system level

(within the OS) and re-ran the same application. In this case, the

kernel withheld peripheral operations until the batch was complete

and then dispatched the calls in quick succession. As a baseline, we

run the four tasks 100 times with a small delay between all tasks.

Figure 2 shows the results. It is particularly notable that batching

even just two peripheral operations together provides a worthwhile

gain (approx. 15%) in efficiency. The results show that batching not

only improves energy efficiency but also that batching at the system

level offers further improvement. System-level batching performs

better than application-level batching in all three setups.

But batching places a latency cost on the completion time of

operations. Applications will experience delay in receiving results

from operations. This latency cost and the reduction in energy usage

should be in balance to make batching as applicable as possible.

Having control of the trade-off between latency and energy is a

desirable aspect for batching in embedded systems.

4 Design
The main focus for the batching system is the reduction of energy

usage, but there are other key goals for the system:

• Support latency-sensitive applications. Embedded devices

are often event-driven. Even though batching is opposed

to this goal, supporting a wide variety of devices requires

accommodating these applications.

• Operate transparently. Applications should not have to in-

teract with the batching system. This allows developers to

keep applications code portable. It also reduces the imple-

mentation complexity in memory-constrained hardware.

• Be configurable. It should be straightforward for the sys-

tem designer to adjust when and how the batching system

works: how often to execute batches, how long to retain pe-

ripheral operations, which operations to batch, etc. It must

also be possible to simply disable the batching system.
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Figure 3: Overview of system-wide batching. The system ex-
ploits asynchrony to batch peripheral operations. The batch
contains requests for the ADC and the AES accelerator. The
ADC and AES operations execute simultaneously, and appli-
cations receive the results through callbacks.

This design exists entirely within the embedded OS and specifi-

cally targets parallelizing the operation of the peripherals found in

the device. With the batching system as a foundation, we design a

batching policy to optimize for lower latency and higher energy ef-

ficiency while still allowing time-sensitive tasks to execute without

delay. To maximize the opportunity to improve energy efficiency,

we focus on general control of all peripherals and do not target

a specific class. Optimization is possible for specific types of pe-

ripherals, such as for MCUs that actually feature multiple blocks of

ADC sampling hardware [4], but this is a narrower optimization.

4.1 Requirements for system-level batching
To make batching at the system level work, the system must me-

diate all interactions between applications and peripherals. This

separation enables manipulating when applications’ calls reach

drivers. Applications, the system, and drivers must also support

asynchrony for batching to be effective. Applications must support

receiving the results of peripheral operations through callbacks.

Respectively, the system must allow applications to continue ex-

ecuting after issuing a driver call, otherwise, a batching system

could only consider up to a single operation per application. Also,

peripheral drivers must not poll hardware and waste execution

time. Drivers must instead rely on interrupts so that the system

and CPU run independent of peripherals.

Manipulating the progression of driver calls is the key to batching

the resulting peripheral operations. The system must be able to

stop calls from reaching drivers at the original time of invocation to

delay operations for batching. The system must also be able to then

issue the call at any time after receiving it from the application to

determine when to execute batched operations.

When an application makes a peripheral driver call, the system

receives the request and stores data necessary tomake the call to the

driver later. This information includes the originating application,

the target driver, and the arguments necessary to make the call. The

system then returns control to the application, continuing execution.

Once the system decides to execute a batch, the system issues

the withheld calls in quick succession, effectively parallelizing the

peripheral operations. As each completes, drivers deliver results to

applications through callbacks. Figure 3 illustrates this in action.

4.2 Integration with the OS
Modifying the OS kernel offers a strong basis for the batching

system, providing the requisite control to perform batching and also

supporting the goal of operation transparent to applications. The

context information necessary to execute batched operations and

to return their results is readily accessible from within the kernel

(e.g., the reason for userspace-kernel control transfer, or which

application a call originates from). This simplifies implementation

compared to an approach where the kernel is completely unaware

of the batching system. However, instead of directly modifying the

kernel to perform batching, we pursue an approach where batching

logic is separate from the kernel to achieve a modular, adaptable

design. This separate logic implements the batching policy that the

system designer customizes to suit their requirements.

The kernel makes calls to hook functions provided by the batch-

ing policy at specific points in its control flow. They allow the

batching policy to interact with the kernel at runtime. The hook

functions decide when to batch, what to batch, and when to execute.

The first batching policy hook function determines whether the

kernel should run an incoming driver call. It occurs when control

flow returns from an application to the kernel after the kernel de-

termines that the application is attempting to invoke a driver. The

second batching policy hook function returns batched driver calls

the policy is ready to have execute. The call to this function occurs

at the beginning of the scheduling loop before the kernel selects an

application to run on the CPU, a frequently-run area of code that

will ensure batch executions begin with little delay.

Other batching system designs could achieve the transparency

and configurability necessary but pose difficulties that make them

infeasible for implementation. Implementing it as a new, separate

layer between userspace and the kernel would result in a highly

modular design, but it would suffer from a lack of context informa-

tion about system activity. This approach must discern driver calls

from other reasons for control flow switching between applications

and the kernel, and it would have to track which applications are

running as well as require code for interacting with drivers. The

kernel already has facilities for this. Another approach would be

to make batching a function of the existing CPU scheduler, which

would make for a pluggable implementation but introduce unnec-

essary complexity by combining the concerns of selecting when

applications can run their code and when peripheral operations

occur. It forces the system designer to implement an entirely new

scheduler to change either the scheduling or batching policy.

4.3 Batching units of work
The primary target of batching is the hardware operation of a

peripheral. However, we also consider the steps preceding and

following the operation to maintain transparent function and to

avoid implementation complexity. Application execution naturally

consists of driver calls, interrupts, and peripheral hardware activity.

Control flow also involves hand-offs between different abstraction

layers. This means that there are many possible definitions of a

unit of work for batching.
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Figure 4: General execution flow of a driver call illustrated
using an AES driver as an example. This model shows the
software abstraction layers where batching is possible. The
dashed rectangle outlines the focus of our batching system.

The OS goes through several steps to execute a peripheral oper-

ation (Fig. 4). The kernel receives a driver call from the application

and invokes the driver. The driver performs prerequisite config-

uration and runs hardware-specific code to start the peripheral

operation. Upon completion, the peripheral will issue an interrupt.

The hardware-specific code will, once again, execute to service

the hardware followed by the rest of the driver code. The driver

will update internal state and issue a callback to the application to

notify it of completion, possibly delivering data as well. Drivers

may deviate from this flow depending on how they or the hardware

work, but this is a generally applicable model of the execution flow.

Importantly, when running atop an embedded OS that utilizes a

scheduler to select applications for execution, there is already no

guarantee on the exact timing of these interactions. This makes it

easier to interpose batching at points between these steps.

There are, however, problems that can arise that we are careful

to not introduce so as to limit complexity. Separating generic and

hardware-specific driver code can impede drivers that require ac-

curate timing (e.g., the 1-wire protocol [9]), and delaying hardware

servicing may result in lost or corrupted data. Therefore, drivers

must have an accurate view of hardware state at all times, and

they must be able to service hardware immediately after interrupts.

Delineating batchable units of work between these points would

require additional handling to resolve these issues.

Given general execution flow and the aforementioned potential

complexities, we determine that a unit of work for the batching

system includes the hardware-agnostic and hardware-specific por-

tions of a driver and the initiation of the peripheral. This means the

batching system will aggregate driver calls that the kernel receives

to build batches and issue these calls later to execute the batch. It

is also possible to consider the eventual callback to the application,

but we focus on the peripheral operation in this work.

4.4 Efficient, responsive batching
Deciding when to execute a batch determines the efficiency the

system can attain and the latency it imposes on applications. Even

without considering latency-sensitive operations, the system should

balance energy efficiency and latency. There are two simple policies

that attain either extreme of energy efficiency and timeliness: time-
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Figure 5: Efficiency of window durations in a system with
a mean interarrival time of 𝜆 = 428ms. There is a notable
decrease in efficiency after shortening the window below
this duration. This provides a useful guideline for adjusting
batching window length for time-window-based policies.

and count-based batching. We take observations about each to build

a third policy that can adapt to activity frequency.

The first simple policy is to batch for some fixed duration. The

window begins when the first unit of work arrives. At the end

of the window, the policy executes all batched work. This policy

upper-bounds the latency of work. However, it does not provide

efficiency if no more than one peripheral operation accumulates

before the window expires. Tuning the window duration is key to

attaining energy efficiency in this policy.

To observe the effect of window duration on energy efficiency,

we ran three applications. These applications wrote data over UART

every second, queried a temperature and a humidity sensor every

two and three seconds, and sampled with the ADC every three sec-

onds. Figure 5 shows the energy efficiency of each window duration.

The longest window, 1 second, achieves the best energy efficiency. It

is the minimum duration possible without overlapping the shortest

period. Subsequently shorter windows achieve dwindling efficiency.

There is a notable drop in efficiency between the 1-second and 800

ms windows, but there is also one between the 500 ms and 400 ms

windows. Between 400 and 500 ms is the mean interarrival time,

428 ms, according to the Poisson distribution. Windows shorter

than this value are noticeably less likely to batch more than a single

operation than window sizes greater than the mean. These results

suggest that the minimum of all periods and the Poisson mean are

useful durations for deriving fixed time windows.

The other simple policy is to aggregate a fixed number of opera-

tions before executing. A fixed-count batching policy provides a

strong guarantee of efficiency by forcing a number of operations to

accumulate before the batch executes. The system designer can set

the required batch size based on what they know about the activity

of the system and its applications, but even just two operations

give notable efficiency (Section 3.2). However, this policy provides

no latency guarantees; an operation could await execution a long

time before the system finally executes it.

Based on observations about the two simple policies, we design

a hybrid policy that combines both to balance energy efficiency

and latency. Embedded applications often function by periodically

running code. This provides a good basis for deriving time windows.
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As we previously observed, one duration we can use is the mini-

mum period of all periodic activity. This is a window that avoids

redundant requests from applications. We call this the conservative
window. However, we also use the periodicity of embedded appli-

cations as a basis to gauge how often a single batchable operation

arrives. By setting the duration to the mean interarrival time, we

can likely form batches of at least two operations. We call this

the responsive window. The hybrid policy can use either of these

durations or one between them to balance efficiency and latency.

The hybrid policy also incorporates our observations about fixed

batch sizes. When the hybrid policy accumulates two batchable

operations, it executes on the batch regardless of the time remaining

in the window. In so doing, applications can experience less latency

at the expense of giving up additional energy efficiency possible

from accumulating more than two batchable operations.

4.5 Ahead-of-time batching
The hybrid policy provides a balance between energy efficiency

and responsiveness, but latency-sensitive applications must operate

without delay. For example, interacting with a user navigating

a UI, or occupancy detection in dangerous work areas [5]. The

delay that separates these events is unpredictable and can occur

before a single batchable event has arrived. When they occur after a

single batchable event is awaiting execution, the hybrid policy can

immediately execute on the batch and operate efficiently, but when

they arrive before a batchable event has arrived, there is a loss of

energy efficiency because there is no other operation to execute

with the latency-sensitive operation.

Key to improving energy efficiency in the face of latency-sensitive

events is the consideration that some applications may be amenable

to having their peripheral-bound activity run sooner than originally

scheduled. Though not possible for all peripheral operations, the

OS can run some peripheral operations without any input from

applications. This takes advantage of the periodic nature of em-

bedded applications, which allows the OS to learn the schedule

of operation requests by tracking when they execute and which

applications make the requests. When a latency-sensitive operation

must execute, the OS can use its knowledge of upcoming scheduled

operations to anticipate and run another operation alongside the

latency-sensitive operation. Then, when the application makes its

request for the peripheral operation that occurred ahead of time,

the OS delivers the result obtained from the expedited execution.

We term this preemptive execution ahead-of-time batching (AoT).

Ahead-of-time batching requires that we classify operations the

device is capable of performing. In our classification, We deem pe-

ripheral operations either latency-sensitive or batchable. Latency-

sensitive operations are not subject to batching and execute imme-

diately. Batchable operations are those the system can delay the

execution time of to improve energy efficiency. Among all batchable

operations is a subset with unpredictable inputs (e.g., encryption,

transmitting sensor data) and are thus not executable until the

application makes the driver call. All other batchable operations

can execute ahead of their normally scheduled execution time in-

dependent of an application’s call. When an application makes a

request for an operation that was pre-executed by the policy, the

OS immediately returns the cached data.

We extend the hybrid batching policy with the ahead-of-time

batching capability to create the new batching policy. This changes

the behavior of the hybrid policy in two cases: when receiving the

first batchable operation in a batch and when a latency-sensitive op-

eration arrives before a batchable operation. In the first case, upon

receiving the first batchable operation of a batch the policy adds the

operation to the batch but also consults the schedule of upcoming

operations for the operation that is to occur the soonest. To avoid

pulling forward progressively later and later scheduled operations,

only operations scheduled with a time remaining less than their

period are eligible. In the second case, upon receiving a driver call

for a latency-sensitive operation, the policy pulls forward the oper-

ation that is to occur the soonest. Both the latency-sensitive and

expedited operation run together as part of an ad hoc batch, allow-

ing both the latency-sensitive operation to run without additional

delay and the device to use energy more efficiently.

We call this policy the ahead-of-time (AoT) batching policy and

provide pseudocode for its function in Algorithm 1. The AoT policy

is one that executes latency-sensitive operations quickly yet still

attempts to use energy efficiently. As just another batching policy, it

interacts with the kernel and is one of the many possible strategies

to perform batching.

Algorithm 1 Pseudocode of the ahead-of-time batching policy.

𝑒 ← current request

𝑏 ← currently batched requests

𝑆 ← upcoming scheduled events

procedure get_aot_operation
for each scheduled event, 𝑠 , in 𝑆 do

if time_remaining(𝑠) < period(𝑠) then
𝑏 += operation(𝑠); break

end if
end for

end procedure
if 𝑒 is latency-sensitive then

𝑏 += 𝑒

if |𝑏 | == 1 then
𝑏 += get_aot_operation

end if
run(𝑏)

else
𝑏 += 𝑒

if |𝑏 | == 1 then
begin_window()

𝑏 += get_aot_operation

else if |𝑏 | ≥ 2 then
run(𝑏)

end if
end if

5 Implementation
We implement the batching system on Tock [17]. Tock is an em-

bedded OS for microcontrollers. Tock imposes a strong boundary

between applications and the kernel; the code for each of the en-

tities is separate, and drivers execute in the context of the kernel.
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The kernel uses a scheduler to select which application to run on

the CPU, meaning that applications are not always running and

that the scheduler could delay a runnable application indefinitely.

Applications communicate with drivers through a standardized

syscall interface. A syscall driving a GPIO pin high on one platform

will look the same on every other platform Tock supports. Syscalls

provide applications both high-level and fine-grained control over

hardware (e.g., a single syscall can refresh a display with several SPI

transactions or just trigger a single SPI transaction). Inspecting and

manipulating syscalls is the key to performing batching in Tock.

5.1 Batching policy
The batching policy is defined by the BatchController interface.
The interface requires the implementation of a handful of functions:

check_enqueue(Process, Syscall) decides if a call from

an application should be batched, storing the call or indi-

cating that it should be executed immediately.

dequeue_syscall() returns a batched syscall.

state() returns the current policy state.

The kernel uses these calls at runtime to determine its operation.

The batch controller is a state machine that switches between

two states: Batch and RunSyscalls. It transitions between the two

based on the policy design. For example, a fixed time window policy

would start in the Batch state. After a syscall arrives, it sets a timer.

Once the timer expires, it transitions to RunSyscalls. Once the
kernel exhausts the batched syscalls with dequeue_syscall(), the
batch controller transitions back to Batch. Determining when the

batch controller alternates between the two states determines how

the batching system works.

The batch controller maintains all information necessary to issue

syscalls later. This includes the destination driver, the call being

made to the driver, the arguments, and the calling application.When

the batch controller switches to the RunSyscalls state, the kernel

fetches pending calls and dispatches them to the respective driver.

5.2 Kernel changes
Ourmodifications to the Tock kernel add calls to the batch controller

to integrate batching. These calls change the how the kernel handles

incoming syscalls as well as when the kernel runs syscalls awaiting

execution. The behavior of the kernel is dependent on the current

state of the state machine batch controller maintains.

After receiving a syscall, the kernel calls check_enqueue() to
determine how to handle it. This call occurs just before the kernel’s

syscall dispatch after control returns to the kernel. By doing this, all

syscalls made by applications pass through the check_enqueue()
function. The batch controller returns a decision: either that the

kernel should execute the syscall immediately or that it is retaining

the call, and the kernel should not execute the syscall.

The kernel queries the state of the batch controller state ma-

chine at the top of each iteration of the scheduling loop to deter-

mine if it should run batched syscalls. There is flexibility in where

this can happen in the code, but we place this hook function call

just before the kernel invokes the scheduler to select a process to

run. If the call to state() returns RunSyscalls, the kernel calls
dequeue_syscalls() until it exhausts the syscalls the batch con-

troller has retained. As the batch controller returns pending syscalls,
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Figure 6: Call flow for batching and executing batched pe-
ripheral operation syscalls. When the batch controller’s state
machine is in the batching state, the kernel performs no
action with peripheral operation syscalls. Once the batch
controller switches to the execution state, the kernel initi-
ates the batched operations in quick succession, returning
results to the applications upon their completion.

the kernel completes the calls to the drivers, running the delayed

calls in quick succession.

5.3 Ahead-of-time batch controller
The implementation of the AoT batching policy adheres to the

batch controller interface. To implement the time window-based

functionality, the controller uses on-chip timer hardware. Since the

controller retains the data about withheld syscalls, it is simple to

provide the count-based batch execution behavior.

The AoT controller maintains a lookup table to determine how

to handle syscalls that the kernel sends through check_enqueue().
By default, the controller performs no special action on a syscall. It

passes through unaffected. It is easier to specify the syscalls that

require special handling. Because Tock standardizes syscalls, the

table and entries are portable across different hardware platforms.

The system designer can easily add or remove entries to the table

to configure syscall batching behavior of specific syscalls.

To make predictions for ahead-of-time batching, the batch con-

troller must know which peripheral operations are upcoming and

when those operations are scheduled to execute. Because appli-

cations interact with the alarm driver to schedule callbacks, the

controller can learn applications’ periodic schedules by inspecting

alarm driver syscalls as they pass through check_enqueue(). It
maintains a table storing these timers and their source application

and tracks the time remaining for all alarms each time the kernel
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application operation(s) batch? AoT?
accelerometer query accelerometer ✗ ✗

biometrics

read temperature ✓ ✓

read GSR ✓ ✓

encrypt data ✓ ✗

display refresh screen ✓ ✗

loudness collect audio samples ✓ ✓

synchronize

configure radio ✓ ✗

send data ✗ ✗

Table 2: Evaluation applications, operations they execute,
and whether they are batchable or executable ahead of time.

calls check_enqueue(). In this implementation, we use a naïve

method to correlate a peripheral operation to an alarm. It assumes

that any peripheral operation syscalls originating from the appli-

cation in the execution of its timeslice following its alarm firing is

the periodically occurring peripheral operation.

In Tock, applications have their own buffers and data they share

with the kernel to move data to and from drivers, however, interact-

ing with these at runtime without the knowledge of the application

(e.g., an ahead-of-time execution placing ADC samples in a buffer

while the application is performing analysis on the data currently in

the buffer) can yield unexpected behavior. To safely execute periph-

eral operations before an application actually requests them, we

implement a substitute process, ThinProcess, that implements the

bare minimum function of a process that the kernel never actually

schedules. The ThinProcess has its own grant memory and buffers

that the controller configures for a single application and driver at

a time. The controller executes syscalls through this structure, and

ThinProcess retains results for expedited syscalls,

Syscalls differ in how they return data to applications (e.g., a re-

turn code or a return code and a value). We encode the return behav-

ior of each ahead-of-time-eligible syscall in the ThinProcess imple-

mentation itself with another lookup table. The batch controller can

forward data back to the application depending on how the syscall

itself functions. Just as with syscall handling in check_enqueue(),
this information is portable between platforms, as Tock standard-

izes syscall behavior. Regardless of what data a syscall returns,

drivers deliver results of peripheral operations through callbacks.

Therefore, to deliver the result of a pre-executed operation once the

application actually makes the corresponding syscall, the controller

queues a callback using an application’s Process control structure.

6 Evaluation
We performed a series of evaluations to reveal the batching sys-

tem’s effects on energy consumption, latency, and system overhead.

We performed our evaluations on the Hail [1] development board

running an ARM Cortex-M4 MCU. In addition to using the onboard

hardware, we connected a 2.13-inch Waveshare e-Paper display [6]

to Hail via SPI. We used a Raspberry Pi 2B [3] and a Texas In-

struments INA219 [2] current sensor to control evaluations and to

record the total energy consumption.

6.0.1 Evaluation applications. The evaluations use applications

that execute periodically and run in response to external events.

These applications initiate various peripheral operations. Table 2

provides an overview of the applications and their function. They

provide a mix of activities that one could find on a wearable device.

Accelerometer (accel) is a pedometer. It registers threshold noti-

fications with the accelerometer to count steps. Upon receiving a

notification, the application validates vector values to track motion.

This is a latency-sensitive operation. Biometrics (bio) monitors

biometric data. It senses temperature and galvanic skin response

(GSR). After collecting data for both, it encrypts the data. Display
(disp) refreshes the e-ink display. Loudness (loud) monitors the

loudness of the environment. It collects audio and uses it to calcu-

late the noise level. Synchronize (sync) sends data over Bluetooth.
It exchanges data with a separate, central Bluetooth device. Both

configuring the radio and sending data are latency-sensitive, as

wireless communication may be adversely affected by delay.

To run controlled, repeatable experiments involving accel, we
instead deliver interrupts to a GPIO pin on Hail using the Raspberry

Pi. These interrupts are jittered to mimic small variation in the

pace of a human walking. The application still registers for vector

threshold interrupts from the sensor and responds to the synthetic

interrupts from the Raspberry Pi by running the same code to

retrieve data from the accelerometer.

6.0.2 Batching implementations. We compare the ahead-of-time

batching policy with other implementations. Simple is an in-kernel
system that batches by monitoring the running state of processes,

batching indirectly through the CPU scheduler. When a process

is ready, the kernel waits for a period of time before running the

application, accumulating other processes that become ready to

run. Time is a fixed time window policy as described in Sec-

tion 4.4. We implement this as a batch controller (Section 5.1).

Monolithic combines the function of multiple applications into one

and performs batching within the application code. This represents

a traditionally-developed embedded application. ES-RHS [21] is a

rate-harmonizing scheduler that aims to align the phase of sched-

uled operations to perform batching. Operations that arrive must

wait until the next harmonizing period before executing, at which

point all waiting operations will execute. It performs no special

handling for latency-sensitive operations. We implement this as a

batch controller (Section 5.1).

6.1 Coordinating application execution
We first revisit the experiment from Section 1 to show the batching

system consistently coordinating applications. We use the same

applications as before. These applications still exhibit variation in

when exactly they schedule their periodic activities. Tock starts

applications sequentially, so depending on how long applications

run at startup, individual applications will naturally not align their

own periodic executions.

Figure 7 presents the results alongside the original results (from

Fig. 1). Across all three configurations, the AoT policy optimizes

for lower energy consumption and lower energy consumption vari-

ation when executing multiple applications. Across 100 trials, the

minimum andmaximum energy consumption for AoT and the batch

controller framework is only slightly higher than the coordinated

scenario for the non-batching system.
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Figure 7: Coordinated and uncoordinated energy consump-
tion by applications with no batching and the minimum and
maximum energy consumption using the AoT policy. The
AoT policy successfully coordinates application activity to
reliably run efficiently.
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Figure 8: Energy consumption reduction (relative to no batch-
ing) of different batching policies when running different
sets of applications.

6.2 Energy consumption reduction
We compare the energy consumption of several application sets

running with different batching policies to gauge the effectiveness

of our batching system. We also separately evaluate the benefit of

AoT batching to energy consumption.

6.2.1 Energy efficiency of application sets. We first compare the

energy efficiency of the batching implementations by installing

different sets of applications (described in Section 6.0.1) on the

evaluation device. The applications access peripherals at different

rates. Accel accesses the accelerometer approximately every 750 ms.

Bio reads temperature every two seconds and reads GSR every four

seconds. Disp refreshes the display every second. Loud samples

every three seconds. Sync communicates with a separate device

every 20 seconds. We run each set with each batching policy in ten

5-minute trials and record energy consumption. For the baseline,

we ran the same application sets on Tock 2.0 unmodified which

does not perform batching. Using the baseline, we computed the

reduction in energy consumption and present the results in Fig. 8.

Generally, runningmore applications offersmore opportunity for

reducing energy consumption. Energy efficiency trends upward go-

ing from two to four applications. Out of all policies, AoT performs

the best in energy efficiency. ES-RHS matches AoT in efficiency
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Figure 9: Power trace showing batching Bluetooth radio con-
figuration (UART) and ADC sampling (ADC). Wireless com-
munication is handled by a separate SoC and occurs outside
the control of the system.

except in application sets with latency-sensitive operations, like

{accel, disp, loud}. The responsive AoT policy tends to outperform

the simple strategy and the monolith, but the monolith sometimes

achieves efficiency between the AoT policy variants.

Each of the two-application sets demonstrates howwell batching

improves energy efficiency in a simple scenarios of multi-tenancy.

The {disp, loud} set is the simplest of the two-application sets to

achieve energy reduction with. The batching policies must only

align the display refresh with audio sampling, so all batching strate-

gies attain notable energy efficiency. The {accel, bio} set shows that

AoT is able to improve energy efficiency over the other approaches

with the occurrence of latency-sensitive operations from accel.
The {bio, loud} set shows the effect of peripheral usage conflicts

on energy efficiency achieved by each batching policy. Both applica-

tions use the ADC, resulting in a sequential usage of the ADC (only

one sampling operation may occur at a time). Therefore, the ADC is

active for longer and the second operation might not have another

operation to run concurrently with. However, the AoT policy can

avoid this conflict by sometimes pulling forward the samplings to

make a batch with the encryption operation or temperature reading.

Notably, introducing accel to a set improves AoT’s energy effi-

ciency (e.g., {disp, loud}→ {accel, disp, loud}), though the improve-

ment between {bio, disp, loud} and {accel, bio, disp, loud} is less

impactful. While other strategies allow the accelerometer query to

run by itself, AoT pre-executes another operation concurrently, as

long as one is eligible. This allows AoT to maintain a higher mean

batch size. When applications do not issue latency-sensitive opera-

tions, AoT performs similarly to ES-RHS. We further explore the

contribution of pre-execution to energy efficiency in Section 6.2.2.

Hail uses a separate SoC to perform Bluetooth connectivity. Soft-

ware running on themainMCUhas limited control over thewireless

chip’s activity compared to solutions that integrate the hardware

into a single MCU. However it is possible to batch application- or

driver-initiated operations (Fig. 9). We include sync with all other

applications to show the effect on energy efficiency. We have an ex-

ternal Bluetooth-enabled device connect to and exchange data with

the evaluation device and then disconnect, as a phone would with

a wearable device. All strategies lose efficiency, but AoT achieves

an approximate 15% efficiency improvement.
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Figure 10: Reduction in energy consumption (relative to no
batching) achieved by AoT with and without pre-execution.
Pre-execution provides an improvement in energy efficiency
after adding the latency-sensitive accelerometer application.
Without it, there is a decrease in energy efficiency. The pre-
execution aspect of AoT improves energy efficiency when
running latency-sensitive applications.

6.2.2 Benefit of ahead-of-time batching. Ahead-of-time batching

enables energy-efficient execution of latency-sensitive operations.

However, if the frequency of latency-sensitive events outpaces the

frequency of batchable operations, the likelihood of batching at least

two operations decreases. Knowing what benefit the pre-execution

aspect of AoT offers and when that benefit applies helps understand

what use cases it is best suited for. We now compare the efficiency

of the AoT policy with a variant of itself that does not pre-execute

operations to isolate the benefit of pre-execution. This variant is

equivalent to the hybrid policy (Section 4.4).

We run {disp, loud}, {accel, disp, loud}, {bio, disp, loud}, and {accel,

bio, disp, loud} and provide the results in Fig. 10. The policies with

and without pre-execution perform similarly with {disp, loud} and

{bio,disp,loud}. But with pre-execution, the conservative AoT policy

improves energy efficiency going from {disp, loud} to {accel, disp,

loud} (10.2%→ 14.5% for AoT cons.) and gives a less significant

gain from {bio, disp, loud} to {accel,bio,disp,loud} (17.0%→ 18.6% for

AoT cons.). Without pre-execution, energy efficiency drops going

from {disp, loud} to {accel, disp, loud} and from {bio, disp, loud} to

{accel, bio, disp, loud}. Both of these cases introduce accel to the set

which adds a latency-sensitive operation to the system. This shows

that the benefit from using the AoT policy applies when the system

must handle latency-sensitive events; there is little difference in

efficiency between pre-execution on and off in sets without accel.
To explore why AoT does not improve efficiency between {bio,

disp, loud} and {accel, bio, disp, loud} as much as between {disp,

loud} and {accel, disp, loud}, we performed an experiment to see how

the frequency of latency-sensitive events affects batch size (and

consequently, energy efficiency). We deployed {disp, loud} alongside

a third application that issues timer interrupts at an approximate

rate with ±5% jitter and reads the accelerometer. By varying the

interval of the timer and tracking mean batch size, we obtain Fig. 11.

As the rate of the latency-sensitive operations increases, the ratio

of latency-sensitive to batchable operations also increases.

In this setup, AoT without pre-execution consistently achieves

smaller batches. If an accelerometer operation arrives after the

display refresh, both policies can batch them together. However, if
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Figure 11: Mean batch size of AoT with pre-execution on
and off running {disp, loud} and a synthetic application is-
suing aperiodic latency-sensitive operations. As the ratio of
latency-sensitive to batchable operations increases, the gap
in mean batch size decreases but full AoT maintains larger
mean batch sizes. Full AoT maintains a higher mean batch
size and outperforms AoT with no pre-execution. At higher
ratios, the advantage of pre-execution decreases.

the accelerometer operation arrives before the display refresh, the

policy without pre-execution must execute it alone. Meanwhile, the

full AoT policy maintains a higher mean batch size by sometimes

pulling forward the ADC sampling operation. As the ratio increases,

AoT maintains an advantage, but at much higher ratios, it will

behave similarly with neither being able to keep up with the rate of

latency-sensitive operation requests. If the rate of latency-sensitive

operations far exceeds that of batchable operations, there is only a

small additional benefit to energy efficiency.

activity application behavior change from “default”

default

display updates every 10 s

loudness metering every 5 min.

temperature reading every 3 min.

GSR readings every 10 min.

send data via Bluetooth every 5 min.

sleeping

display updates disabled

loudness metering every 10 min.

temperature reading every 10 min.

send data via Bluetooth every 30 min.

sitting

accelerometer event approx. every 30 s

GSR readings every five minutes

walking

accelerometer event approx. every 800 ms

loudness metering every one minute

GSR readings disabled

temperature readings disabled

send data via Bluetooth every 30 sec.

eating accelerometer event approx. every 5 s

Table 3: Variation in application behavior (Section 6.2.3). “De-
fault” describes all application behavior under all activities.
Other activities describe behavior changes from “default.”
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Figure 12: Energy consumption reduction of batching strate-
gies when running applications that change the frequency
of their activity over time.

6.2.3 Dynamic applications. Embedded applications can exhibit dy-

namic behavior: starting or stopping their periodic activity, chang-

ing the periods of their activity, or changing which peripherals they

use. To evaluate the effectiveness of the system in a more complex

scenario, we alter the behavior of the wearable applications ac-

cording to traces of a participant’s everyday activity in the labeled

open wrist activity dataset, CAPTURE-24 [12]. We use six hours of

data that includes a total of: 70 minutes of sleeping, 128 minutes of

sitting or office work, 46 minutes of eating, 47 minutes of walking,

46 minutes of eating, and 22 minutes of household chores. These

activities are not contiguous. Applications modify their behavior

according to the current activity. Table 3 details their behavior.

We run the applications in six-hour trials with each batching

policy and compare their efficiency in Fig. 12. The result is con-

sistent with the experiment using application sets. AoT maintains

the best efficiency among these approaches when using the conser-

vative window, and it achieves efficiency similar to ES-RHS when

using the shorter, responsive window. This shows that the batching

system and AoT can adapt to a common, dynamic use case.

6.3 Impact to applications
Although the AoT policy can execute latency-sensitive operations

efficiently, it delays other batchable requests. To understand the

impact the policy has on applications, we characterize the latency

imposed on individual operations and the overhead latency of the

batching logic. We instrument Tock and the batching code to profile

the system and deploy the {accel, bio, disp, loud} set.

Figure 13 gives the CDF for latency experienced by operations

withheld by batching under AoT and ES-RHS policies. This latency

includes the time spent awaiting execution and the time the batch

controller spends processing the operation (a small fraction of the

total time). In this experiment, the batching window durations for

conservative AoT and ES-RHS are equal at 1 second. The batching

window duration for responsive AoT is 520 ms.

The CDF for AoT is approximately uniform, notably different

from ES-RHS. This is due to the aperiodic operations for accel
causing batches to also execute aperiodically. This occurs both with

the full AoT policy and the AoT policy without pre-execution. This

implementation of ES-RHS immediately executes latency-sensitive

operations, leaving batched operations unaffected.
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Figure 13: Batching latencywhile running the {accel, bio, disp,
loud} set. Handling aperiodic operations causes the CDF for
AoT to take on a nearly uniform distribution.

Though both policies upper-bound delay, AoT imposes a less

predictable delay than ES-RHS. ES-RHS dictates a harmonizing

interval, and as long as an application does not change its sched-

uling period, its operation will experience the same delay before

execution. However, because AoT makes use of aperiodic events,

batches may execute earlier than its window duration. The delay

will be between zero and the duration of the window.

A fraction of time in these measurements is the time it takes for

the kernel and batch controller to handle the peripheral operation.

Every syscall passes through the batch controller, so every syscall

will have this time added to its execution. When the AoT batch

controller transparently passes a syscall, it adds about 3.15 µs to its

execution time. When the AoT batch controller withholds a syscall,

it adds 126 µs before returning to the application.

Summarily, AoT trades off predictability in delay to accommodate

latency-sensitive operations and to improve energy efficiency. This

has the additional effect of improving the latency of batched opera-

tions over an approach which does not consider latency-sensitive

operations for batching, though this is dependent on the expected

frequency of aperiodic events compared to periodic events.

6.4 System overhead
The batching system increases binary size and memory usage. Since

embedded hardware varies widely, what may be a small cost to

one device may overwhelm another. We evaluate overhead with

respect to our evaluation platform, which has 64 KB of SRAM and

512 KB of storage. These specifications are representative of low-

power embedded systems. Table 4 gives the code size of different

batching implementations. The AoT policy is the largest, requiring

an additional 1,956 B. At runtime, AoT uses 304 B of RAM, ES-RHS

uses 200 B, the fixed time window uses 204 B, and simple batching

uses 8 B. Hardware specifications in the embedded space varies,

but our evaluation platform easily accommodates these changes.

7 Discussion
Sensor- and peripheral-rich platforms, like wearables and building

monitoring infrastructure, can benefit greatly from controlling en-

ergy usage through peripheral operation batching. We specifically

demonstrate its applicability to a low-power wearable platform, but
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implementation add. code size total binary size
simple batching 896 B 114.7 KB (+0.78%)

time window batching 880 B + 592 B 116.5 KB (+1.55%)

ES-RHS 880 B + 608 B 116.6 KB (+1.70%)

AoT batching 880 B + 1076 B 116.6 KB (+1.71%)

Table 4: Code size increases for batching. For the time win-
dow and AoT policies, the first size is due to the batching
framework; the second is due to the policy implementation.

any device with a breadth of sensing, processing, or communication

hardware can leverage this technique effectively.

The ahead-of-time policy we present can serve a general-purpose

use case, but two scenarios we do not cover in depth that may be

important for system designers to consider are peripheral usage

conflicts and redundant requests. In case of a conflict, a policy could

retry on behalf of applications or determine which to serve based on

some priority. And if applications submit identical requests, a policy

could make a single request to the peripheral driver and return the

result to both applications. This more sophisticated handling would

come at the cost of additional code and memory usage.

Exerting system-level control for batching presents possibilities

for additional research directions. While embedded applications

tend to have simple workflows, factors other than time or a sin-

gle event can trigger peripheral-bound activity. Applications may

depend on the activity of others or implement more dynamic exe-

cution workflows. A deeper analysis of application behavior could

improve both energy efficiency and latency in these cases. Addi-

tionally, considering other properties—such as peripheral operation

duration or application priority—and accordingly adapting window

durations or adding entirely new policy rules could improve energy

efficiency, latency, or feasibility of batching for particular use cases.

8 Conclusion
As the importance of low-power embedded systems grows and

multi-tenancy expands use cases, energy management on these de-

vices must continue to improve for sustainable operation. The batch-

ing system we present coordinates applications in multi-tenant

systems to control energy usage, enabling extended operation or

expanded utility. Its adaptability makes it suitable for a variety of

embedded hardware, and its system-level operation means applica-

tions remain unencumbered with the mechanics of batching. It can

serve many use cases well, but having a deeper understanding of

application behavior may serve more complex applications. This

system-level energy management technique can provide a strong

foundation to build on. To encourage collaboration and repeatabil-

ity, we make our implementation and evaluation artifacts public

upon publication.
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