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Abstract

Multi-tenancy, the co-location of applications on a single device,
increases the utility of embedded systems and lowers deployment
costs. Support for multiple applications has even reached lower-
power battery-powered devices which benefit from modularity and
multitasking, like other computing platforms. But energy remains
a concern for these devices, and multi-tenancy can increase energy
usage as applications execute uncoordinated with each other; their
CPU and peripheral usage wake the device from low-power modes
and collectively increase its active time. To address this, we exploit
the inherent uncertainty in multi-tenant systems and dynamically
shift peripheral activity to increase energy efficiency. Our approach
executes within the OS, requiring no modifications to applications.
We explore policies that trade off energy efficiency and latency
and design one that accommodates latency-sensitive operations by
considering operations to execute ahead of time. Our evaluation
shows our approach outperforms equivalent traditional monolithic
applications. With this approach, low-power embedded systems can
benefit from multi-tenancy without sacrificing energy performance.

CCS Concepts

- Computer systems organization — Embedded and cyber-
physical systems; Embedded software; Sensors and actuators;
Software and its engineering — Scheduling; Power manage-
ment.
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1 Introduction

Embedded hardware now supports multi-tenancy: the co-location
of multiple, distinct software applications on a single device. Multi-
tenant embedded systems support applications in wearables and the
Internet-of-Things, including tracking personal health and fitness
activity [7, 8], providing city-scale sensing [10], and monitoring
building infrastructure [11]. Multi-tenant systems allow the sys-
tem designer (responsible for integrating the hardware and the
embedded OS) and application developers to be completely distinct
entities. Multi-tenant systems enable increased flexibility, lowered
deployment costs, and expanded utility over single-application de-
vices. For example, a user can install applications and extend the
functionality of their smart wearable device, or a local government
may extend a traffic light sensors to assess the city’s busiest routes,
obviating the need for new hardware. Like conventional comput-
ers embedded hardware is fulfilling more general-purpose roles.
The many sensors and accelerators available on-chip make them
suitable as multi-purpose devices.
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Figure 1: Energy usage variation of a device running appli-
cations. The applications sense light, sample with the ADC,
refresh a display, and encrypt data. Consumption is relative
to the light-sensing app. Working independently, these appli-
cations rarely align their execution, yielding a high median
energy consumption.

However, energy remains a leading concern for these systems.
Careful energy management is critical to ensure sustainable opera-
tion on limited energy budgets. Low-power “sleep” modes enable
these devices to power off components and stop clocks, a significant
contribution to energy consumption [14], vastly reducing power
draw. Traditionally, embedded systems fit the purpose of a single
application, allowing a single developer to tune the application and
control energy usage. In multi-tenant systems however, multiple
applications work concurrently and independently. This compli-
cates energy consumption behavior of the device as applications
execute uncoordinated with respect to each others’ activity.

Applications make use of the peripherals available in embedded
hardware to sense, actuate, and process data. Their uncoordinated
activity keeps the device active in disjoint spans of time, often for
a single application. Even a small set of simple applications can
exhibit a wide range of energy consumption, as Fig. 1 illustrates.
There is a high baseline energy cost for a device to be active, so ac-
tive time is a large factor in energy usage. Though a CPU scheduler
can control application code execution, applications can initiate
peripheral operations, which run independent of the CPU. Just like
the CPU, peripherals require clocks to function, meaning applica-
tions can indirectly inhibit low-power modes beyond the control of
a CPU scheduler. The CPU scheduler alone is not sufficient to con-
trol applications’ energy usage, leaving unpredictability in energy
consumption. Bringing coordination to applications in multi-tenant
systems will not only allow these devices to last longer but also
allow them to do more with the energy they have.
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To control energy usage arising from peripheral activity, we
introduce a batching system designed specifically to control periph-
eral operations. Batching peripheral operations makes it possible to
parallelize their execution, thereby reducing the amount of time the
system is active for only a single application or peripheral. However,
batching as an energy management technique presents challenges.
Most obvious of them is the additional latency it imposes on appli-
cations. Applications will experience delays in starting peripheral
operations and in receiving resulting data or notifications from
interrupts. It is also necessary to define a policy that determines
when to withhold operations from execution and when to execute
them. This affects the system’s responsiveness as well as its energy
efficiency. These concerns run counter to each other; a responsive
policy will batch less effectively and consume more energy, but an
energy-conservative policy will be less responsive.

To provide efficient, responsive batching to embedded systems,
we present a batching framework that integrates with the embedded
operating system (OS) and a batching policy that takes advantage
of the periodic nature of applications to execute latency-sensitive
operations efficiently. Though individual applications may batch
their own operations themselves, batching at the system level en-
ables considering multiple applications’ activity for batching. An
important benefit to this approach is that applications are unaware
that batching is happening. By making it entirely a concern of the
underlying system, application code need not change to work with
the batching system.

The batching system aggregates peripheral operations and exe-
cutes them according to the policy. The batching policy determines
when to execute on peripheral operations it accumulates. Given
the importance of low latency to some applications, we design a
batching policy that gives special consideration to latency-sensitive
operations and maintains energy efficiency when responding to un-
predictable interrupts. This policy identifies peripheral operations
as latency-sensitive, batchable, or pre-executable and maintains
awareness of upcoming operations to execute some ahead of time
with latency-sensitive operations to create ad-hoc batches.

We evaluate the batching system in terms of energy efficiency,
latency, and overheads across several application setups. It achieves
better efficiency than equivalent, monolithic applications and a
state-of-the-art harmonizing scheduler while also accommodating
latency-sensitive operations. The evaluations also characterize the
effect of the ahead-of-time batching policy on energy efficiency to
discern the conditions in which it is and is not effective.

2 Related Work

Energy management is a prominent topic in computing. This work
expands on existing work by highlighting the importance of pe-
ripherals to energy usage in multi-tenant embedded systems and
presents a scheduler to reliably control their energy usage. Here we
examine related work in scheduling for energy efficiency in low-
power embedded devices, the application of batching for energy
efficiency, and managing peripheral hardware energy usage.
Existing literature places much focus on CPU-only workloads.
Most prominent are techniques that use DVFS to adjust power
to the CPU [20, 24]. Niu et al. present a peripheral-aware DVS
algorithm [19], but it uses peripheral power state to determine
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whether to run a job. In this work, we focus on manipulating the
timing of peripheral operations to reduce energy usage.

The benefit of batching to energy efficiency is well-known. In [15],
the authors suggest it as an effective technique for power-hungry
components. Davies et al. present a scheduling algorithm for bal-
ancing energy and flow time [13], but it is an offline algorithm and
requires the number of batches to create as input. Gupta et al. batch
data transmissions from multiple applications to reduce energy
usage in [16], but it is only scoped to radio transmissions. Rowe et
al. present the energy-saving rate harmonic scheduler [21, 22] to
harmonize the execution of periodic tasks to reduce energy usage
but focus only on the CPU and do not consider aperiodic operations.
We use batching to improve the execution of peripheral operations,
but the batching policy we present also executes latency-sensitive
operations without delay while maintaining efficiency.

There are also works in mobile computing that target efficiently
using power-hungry peripherals like GPS and cell modems. APE [18]
is a middleware that allows an application developer to write rules
that the OS uses to decide how to run specific operations with
energy-intensive components. Cinder [23] allows a user to budget
energy between apps, and apps pool their energy to run energy-
expensive operations. These techniques that may be applicable in
the low-power embedded domain, but in this work, we develop
a batch peripheral scheduling system for multi-tenant embedded
systems that does not require developers to specially adapt their
software to work on the platform.

3 Modeling and Opportunity

To understand the efficacy of batching, we build a mathematical
model of batch peripheral scheduling and discuss results of a moti-
vational experiment. The model shows the potential of controlled
peripheral operation scheduling, and our experiment results show
the additional efficiency possible with system-level batching.

3.1 Modeling batch peripheral scheduling

To understand the theoretical limits of energy efficiency through
batching, we model the energy consumption of executing opera-
tions with and without batching. Modeling batch operation provides
an approximate upper bound on energy efficiency, reveals thresh-
olds at which batching becomes unhelpful, and indicates whether
an implementation functions correctly. Our mathematical model
consists of the following:

Eigle = Pidle X tidle 1)
N
Emarginal = Z PperiphA i X periph. i active )
i=0
N
Epaseline = Ppase X Z tperiph. iactive )
i=1
Ebatching = Ppgse X maX(Tperiph. active) ()

Fe1 Ebatching + Emarginal + Eidle

- ®)
Epaseline + Emarginal + Eidle

Table 1 lists the model variables. The model considers a span of time

during which N peripherals execute operations. Each peripheral

operation executes for some duration (fperiph. i active) and causes the
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notation | description

Eidle energy consumed during low-power operation
Emarginal peripheral’s contribution to energy usage

Pidle power of low-power operation

tidle time spent in low-power mode
Ppoeriph. i power of peripheral i

tperiph. i active | duration peripheral i is active

Epaseline energy consumed without batching
Ebatching energy consumed with batching
Phase device active power
Tperiph. active | set of all peripherals’ active durations
F energy consumption reduction

Table 1: List of energy efficiency model variables.

peripheral to consume energy (Pperiph. i)- The total consumption of
that duration is the sum of three values. Two of the three are shared
between the batching and non-batching cases: energy consumption
in a low-power state (Ejqle, equation 1) and energy consumption to
solely power a peripheral (Enarginal, €quation 2).

Energy consumption between the batching and non-batching
cases differs due to the concurrent execution of multiple periph-
eral operations, reducing the total time the system is active. The
non-batching case uses Epageline t0 compute energy consumption,
modeling peripheral operations that execute in disjoint spans of
time. The batching case uses Ep,tching to compute energy consump-
tion, modeling a system that concurrently executes all peripheral
operations and remains active only for as long as the longest periph-
eral operation to execute. We obtain the theoretical reduction in
energy by comparing the total energy consumption of the batching
and non-batching cases (F, equation 5).

The model estimates energy efficiency of batching with some
assumptions that allow the model to remain simple. It assumes that
peripherals start at the same instant which guarantees the device
is active no longer than the longest operation. Actual start times
are separated by a few microseconds, which is a relatively small
fraction of time compared to the tens or hundreds of milliseconds
that peripheral operations typically last. Secondly, it represents
peripheral operations as continuous events with a single start and
stop time although some operations may consist of bursty activity
and exhibit a non-uniform power trace. Also, it does not consider
the energy and time spent shifting between active and low-power
states. These transitions take little time, on the order of single-digit
microseconds, to complete. Nevertheless, the model is useful for
analyzing the potential of batch peripheral scheduling.

3.2 Application- and system-level batching

To validate the model and reveal real-world energy efficiency gain,
we performed a preliminary study. We ran an application perform-
ing four tasks: transmitting over UART, encrypting with an AES
accelerator, querying a temperature sensor, and sampling with the
ADC. We ran the application on Tock OS [17] on the Hail [1] devel-
opment board and measured energy consumption. The application
executed each task 100 times over 30 seconds, batched in three ways:
all four tasks, two groups of two tasks (ADC + AES, UART + temp.),
and one group of three tasks with one isolated task (ADC task
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Figure 2: Reduction in energy consumption by batching pe-
ripheral activity. Application-level batching batches within
application code, and system-level batching works within
the embedded OS. Each pattern is a tuple describing how
many operations are in each batch. Executing batches at the
system level further improves efficiency.

alone). A small delay separated each batch. In this case, batching is
happening at the application level.

We then modified Tock to perform batching at the system level
(within the OS) and re-ran the same application. In this case, the
kernel withheld peripheral operations until the batch was complete
and then dispatched the calls in quick succession. As a baseline, we
run the four tasks 100 times with a small delay between all tasks.
Figure 2 shows the results. It is particularly notable that batching
even just two peripheral operations together provides a worthwhile
gain (approx. 15%) in efficiency. The results show that batching not
only improves energy efficiency but also that batching at the system
level offers further improvement. System-level batching performs
better than application-level batching in all three setups.

But batching places a latency cost on the completion time of
operations. Applications will experience delay in receiving results
from operations. This latency cost and the reduction in energy usage
should be in balance to make batching as applicable as possible.
Having control of the trade-off between latency and energy is a
desirable aspect for batching in embedded systems.

4 Design

The main focus for the batching system is the reduction of energy
usage, but there are other key goals for the system:

o Support latency-sensitive applications. Embedded devices
are often event-driven. Even though batching is opposed
to this goal, supporting a wide variety of devices requires
accommodating these applications.

o Operate transparently. Applications should not have to in-
teract with the batching system. This allows developers to
keep applications code portable. It also reduces the imple-
mentation complexity in memory-constrained hardware.

o Be configurable. It should be straightforward for the sys-
tem designer to adjust when and how the batching system
works: how often to execute batches, how long to retain pe-
ripheral operations, which operations to batch, etc. It must
also be possible to simply disable the batching system.
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Figure 3: Overview of system-wide batching. The system ex-
ploits asynchrony to batch peripheral operations. The batch
contains requests for the ADC and the AES accelerator. The
ADC and AES operations execute simultaneously, and appli-
cations receive the results through callbacks.

This design exists entirely within the embedded OS and specifi-
cally targets parallelizing the operation of the peripherals found in
the device. With the batching system as a foundation, we design a
batching policy to optimize for lower latency and higher energy ef-
ficiency while still allowing time-sensitive tasks to execute without
delay. To maximize the opportunity to improve energy efficiency,
we focus on general control of all peripherals and do not target
a specific class. Optimization is possible for specific types of pe-
ripherals, such as for MCUs that actually feature multiple blocks of
ADC sampling hardware [4], but this is a narrower optimization.

4.1 Requirements for system-level batching

To make batching at the system level work, the system must me-
diate all interactions between applications and peripherals. This
separation enables manipulating when applications’ calls reach
drivers. Applications, the system, and drivers must also support
asynchrony for batching to be effective. Applications must support
receiving the results of peripheral operations through callbacks.
Respectively, the system must allow applications to continue ex-
ecuting after issuing a driver call, otherwise, a batching system
could only consider up to a single operation per application. Also,
peripheral drivers must not poll hardware and waste execution
time. Drivers must instead rely on interrupts so that the system
and CPU run independent of peripherals.

Manipulating the progression of driver calls is the key to batching
the resulting peripheral operations. The system must be able to
stop calls from reaching drivers at the original time of invocation to
delay operations for batching. The system must also be able to then
issue the call at any time after receiving it from the application to
determine when to execute batched operations.

When an application makes a peripheral driver call, the system
receives the request and stores data necessary to make the call to the
driver later. This information includes the originating application,
the target driver, and the arguments necessary to make the call. The
system then returns control to the application, continuing execution.
Once the system decides to execute a batch, the system issues
the withheld calls in quick succession, effectively parallelizing the
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peripheral operations. As each completes, drivers deliver results to
applications through callbacks. Figure 3 illustrates this in action.

4.2 Integration with the OS

Modifying the OS kernel offers a strong basis for the batching
system, providing the requisite control to perform batching and also
supporting the goal of operation transparent to applications. The
context information necessary to execute batched operations and
to return their results is readily accessible from within the kernel
(e.g., the reason for userspace-kernel control transfer, or which
application a call originates from). This simplifies implementation
compared to an approach where the kernel is completely unaware
of the batching system. However, instead of directly modifying the
kernel to perform batching, we pursue an approach where batching
logic is separate from the kernel to achieve a modular, adaptable
design. This separate logic implements the batching policy that the
system designer customizes to suit their requirements.

The kernel makes calls to hook functions provided by the batch-
ing policy at specific points in its control flow. They allow the
batching policy to interact with the kernel at runtime. The hook
functions decide when to batch, what to batch, and when to execute.
The first batching policy hook function determines whether the
kernel should run an incoming driver call. It occurs when control
flow returns from an application to the kernel after the kernel de-
termines that the application is attempting to invoke a driver. The
second batching policy hook function returns batched driver calls
the policy is ready to have execute. The call to this function occurs
at the beginning of the scheduling loop before the kernel selects an
application to run on the CPU, a frequently-run area of code that
will ensure batch executions begin with little delay.

Other batching system designs could achieve the transparency
and configurability necessary but pose difficulties that make them
infeasible for implementation. Implementing it as a new, separate
layer between userspace and the kernel would result in a highly
modular design, but it would suffer from a lack of context informa-
tion about system activity. This approach must discern driver calls
from other reasons for control flow switching between applications
and the kernel, and it would have to track which applications are
running as well as require code for interacting with drivers. The
kernel already has facilities for this. Another approach would be
to make batching a function of the existing CPU scheduler, which
would make for a pluggable implementation but introduce unnec-
essary complexity by combining the concerns of selecting when
applications can run their code and when peripheral operations
occur. It forces the system designer to implement an entirely new
scheduler to change either the scheduling or batching policy.

4.3 Batching units of work

The primary target of batching is the hardware operation of a
peripheral. However, we also consider the steps preceding and
following the operation to maintain transparent function and to
avoid implementation complexity. Application execution naturally
consists of driver calls, interrupts, and peripheral hardware activity.
Control flow also involves hand-offs between different abstraction
layers. This means that there are many possible definitions of a
unit of work for batching.
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Figure 4: General execution flow of a driver call illustrated
using an AES driver as an example. This model shows the
software abstraction layers where batching is possible. The
dashed rectangle outlines the focus of our batching system.

The OS goes through several steps to execute a peripheral oper-
ation (Fig. 4). The kernel receives a driver call from the application
and invokes the driver. The driver performs prerequisite config-
uration and runs hardware-specific code to start the peripheral
operation. Upon completion, the peripheral will issue an interrupt.
The hardware-specific code will, once again, execute to service
the hardware followed by the rest of the driver code. The driver
will update internal state and issue a callback to the application to
notify it of completion, possibly delivering data as well. Drivers
may deviate from this flow depending on how they or the hardware
work, but this is a generally applicable model of the execution flow.
Importantly, when running atop an embedded OS that utilizes a
scheduler to select applications for execution, there is already no
guarantee on the exact timing of these interactions. This makes it
easier to interpose batching at points between these steps.

There are, however, problems that can arise that we are careful
to not introduce so as to limit complexity. Separating generic and
hardware-specific driver code can impede drivers that require ac-
curate timing (e.g., the 1-wire protocol [9]), and delaying hardware
servicing may result in lost or corrupted data. Therefore, drivers
must have an accurate view of hardware state at all times, and
they must be able to service hardware immediately after interrupts.
Delineating batchable units of work between these points would
require additional handling to resolve these issues.

Given general execution flow and the aforementioned potential
complexities, we determine that a unit of work for the batching
system includes the hardware-agnostic and hardware-specific por-
tions of a driver and the initiation of the peripheral. This means the
batching system will aggregate driver calls that the kernel receives
to build batches and issue these calls later to execute the batch. It
is also possible to consider the eventual callback to the application,
but we focus on the peripheral operation in this work.

4.4 Efficient, responsive batching

Deciding when to execute a batch determines the efficiency the
system can attain and the latency it imposes on applications. Even
without considering latency-sensitive operations, the system should
balance energy efficiency and latency. There are two simple policies
that attain either extreme of energy efficiency and timeliness: time-
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Figure 5: Efficiency of window durations in a system with
a mean interarrival time of A = 428 ms. There is a notable
decrease in efficiency after shortening the window below
this duration. This provides a useful guideline for adjusting
batching window length for time-window-based policies.

and count-based batching. We take observations about each to build
a third policy that can adapt to activity frequency.

The first simple policy is to batch for some fixed duration. The
window begins when the first unit of work arrives. At the end
of the window, the policy executes all batched work. This policy
upper-bounds the latency of work. However, it does not provide
efficiency if no more than one peripheral operation accumulates
before the window expires. Tuning the window duration is key to
attaining energy efficiency in this policy.

To observe the effect of window duration on energy efficiency,
we ran three applications. These applications wrote data over UART
every second, queried a temperature and a humidity sensor every
two and three seconds, and sampled with the ADC every three sec-
onds. Figure 5 shows the energy efficiency of each window duration.
The longest window, 1 second, achieves the best energy efficiency. It
is the minimum duration possible without overlapping the shortest
period. Subsequently shorter windows achieve dwindling efficiency.
There is a notable drop in efficiency between the 1-second and 800
ms windows, but there is also one between the 500 ms and 400 ms
windows. Between 400 and 500 ms is the mean interarrival time,
428 ms, according to the Poisson distribution. Windows shorter
than this value are noticeably less likely to batch more than a single
operation than window sizes greater than the mean. These results
suggest that the minimum of all periods and the Poisson mean are
useful durations for deriving fixed time windows.

The other simple policy is to aggregate a fixed number of opera-
tions before executing. A fixed-count batching policy provides a
strong guarantee of efficiency by forcing a number of operations to
accumulate before the batch executes. The system designer can set
the required batch size based on what they know about the activity
of the system and its applications, but even just two operations
give notable efficiency (Section 3.2). However, this policy provides
no latency guarantees; an operation could await execution a long
time before the system finally executes it.

Based on observations about the two simple policies, we design
a hybrid policy that combines both to balance energy efficiency
and latency. Embedded applications often function by periodically
running code. This provides a good basis for deriving time windows.



As we previously observed, one duration we can use is the mini-
mum period of all periodic activity. This is a window that avoids
redundant requests from applications. We call this the conservative
window. However, we also use the periodicity of embedded appli-
cations as a basis to gauge how often a single batchable operation
arrives. By setting the duration to the mean interarrival time, we
can likely form batches of at least two operations. We call this
the responsive window. The hybrid policy can use either of these
durations or one between them to balance efficiency and latency.

The hybrid policy also incorporates our observations about fixed
batch sizes. When the hybrid policy accumulates two batchable
operations, it executes on the batch regardless of the time remaining
in the window. In so doing, applications can experience less latency
at the expense of giving up additional energy efficiency possible
from accumulating more than two batchable operations.

4.5 Ahead-of-time batching

The hybrid policy provides a balance between energy efficiency
and responsiveness, but latency-sensitive applications must operate
without delay. For example, interacting with a user navigating
a Ul or occupancy detection in dangerous work areas [5]. The
delay that separates these events is unpredictable and can occur
before a single batchable event has arrived. When they occur after a
single batchable event is awaiting execution, the hybrid policy can
immediately execute on the batch and operate efficiently, but when
they arrive before a batchable event has arrived, there is a loss of
energy efficiency because there is no other operation to execute
with the latency-sensitive operation.

Key to improving energy efficiency in the face of latency-sensitive
events is the consideration that some applications may be amenable
to having their peripheral-bound activity run sooner than originally
scheduled. Though not possible for all peripheral operations, the
OS can run some peripheral operations without any input from
applications. This takes advantage of the periodic nature of em-
bedded applications, which allows the OS to learn the schedule
of operation requests by tracking when they execute and which
applications make the requests. When a latency-sensitive operation
must execute, the OS can use its knowledge of upcoming scheduled
operations to anticipate and run another operation alongside the
latency-sensitive operation. Then, when the application makes its
request for the peripheral operation that occurred ahead of time,
the OS delivers the result obtained from the expedited execution.
We term this preemptive execution ahead-of-time batching (AoT).

Ahead-of-time batching requires that we classify operations the
device is capable of performing. In our classification, We deem pe-
ripheral operations either latency-sensitive or batchable. Latency-
sensitive operations are not subject to batching and execute imme-
diately. Batchable operations are those the system can delay the
execution time of to improve energy efficiency. Among all batchable
operations is a subset with unpredictable inputs (e.g., encryption,
transmitting sensor data) and are thus not executable until the
application makes the driver call. All other batchable operations
can execute ahead of their normally scheduled execution time in-
dependent of an application’s call. When an application makes a
request for an operation that was pre-executed by the policy, the
OS immediately returns the cached data.
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We extend the hybrid batching policy with the ahead-of-time
batching capability to create the new batching policy. This changes
the behavior of the hybrid policy in two cases: when receiving the
first batchable operation in a batch and when a latency-sensitive op-
eration arrives before a batchable operation. In the first case, upon
receiving the first batchable operation of a batch the policy adds the
operation to the batch but also consults the schedule of upcoming
operations for the operation that is to occur the soonest. To avoid
pulling forward progressively later and later scheduled operations,
only operations scheduled with a time remaining less than their
period are eligible. In the second case, upon receiving a driver call
for a latency-sensitive operation, the policy pulls forward the oper-
ation that is to occur the soonest. Both the latency-sensitive and
expedited operation run together as part of an ad hoc batch, allow-
ing both the latency-sensitive operation to run without additional
delay and the device to use energy more efficiently.

We call this policy the ahead-of-time (AoT) batching policy and
provide pseudocode for its function in Algorithm 1. The AoT policy
is one that executes latency-sensitive operations quickly yet still
attempts to use energy efficiently. As just another batching policy, it
interacts with the kernel and is one of the many possible strategies
to perform batching.

Algorithm 1 Pseudocode of the ahead-of-time batching policy.

e < current request
b « currently batched requests
S « upcoming scheduled events
procedure GET_AOT_OPERATION
for each scheduled event, s, in S do
if time_remaining(s) < period(s) then
b += operation(s); break
end if
end for
end procedure
if e is latency-sensitive then
b+=e
if |b| == 1 then
b += GET_AOT_OPERATION
end if
run(b)
else
b+=e
if |b| == 1 then
begin_window()
b += GET_AOT_OPERATION
else if || > 2 then
run(b)
end if
end if

5 Implementation

We implement the batching system on Tock [17]. Tock is an em-
bedded OS for microcontrollers. Tock imposes a strong boundary
between applications and the kernel; the code for each of the en-
tities is separate, and drivers execute in the context of the kernel.
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The kernel uses a scheduler to select which application to run on
the CPU, meaning that applications are not always running and
that the scheduler could delay a runnable application indefinitely.
Applications communicate with drivers through a standardized
syscall interface. A syscall driving a GPIO pin high on one platform
will look the same on every other platform Tock supports. Syscalls
provide applications both high-level and fine-grained control over
hardware (e.g., a single syscall can refresh a display with several SPI
transactions or just trigger a single SPI transaction). Inspecting and
manipulating syscalls is the key to performing batching in Tock.

5.1 Batching policy

The batching policy is defined by the BatchController interface.
The interface requires the implementation of a handful of functions:

check_enqueue(Process, Syscall) decides if a call from
an application should be batched, storing the call or indi-
cating that it should be executed immediately.

dequeue_syscall() returns a batched syscall.

state() returns the current policy state.

The kernel uses these calls at runtime to determine its operation.

The batch controller is a state machine that switches between
two states: Batch and RunSyscalls. It transitions between the two
based on the policy design. For example, a fixed time window policy
would start in the Batch state. After a syscall arrives, it sets a timer.
Once the timer expires, it transitions to RunSyscalls. Once the
kernel exhausts the batched syscalls with dequeue_syscall(), the
batch controller transitions back to Batch. Determining when the
batch controller alternates between the two states determines how
the batching system works.

The batch controller maintains all information necessary to issue
syscalls later. This includes the destination driver, the call being
made to the driver, the arguments, and the calling application. When
the batch controller switches to the RunSyscalls state, the kernel
fetches pending calls and dispatches them to the respective driver.

5.2 Kernel changes

Our modifications to the Tock kernel add calls to the batch controller
to integrate batching. These calls change the how the kernel handles
incoming syscalls as well as when the kernel runs syscalls awaiting
execution. The behavior of the kernel is dependent on the current
state of the state machine batch controller maintains.

After receiving a syscall, the kernel calls check_enqueue() to
determine how to handle it. This call occurs just before the kernel’s
syscall dispatch after control returns to the kernel. By doing this, all
syscalls made by applications pass through the check_enqueue ()
function. The batch controller returns a decision: either that the
kernel should execute the syscall immediately or that it is retaining
the call, and the kernel should not execute the syscall.

The kernel queries the state of the batch controller state ma-
chine at the top of each iteration of the scheduling loop to deter-
mine if it should run batched syscalls. There is flexibility in where
this can happen in the code, but we place this hook function call
just before the kernel invokes the scheduler to select a process to
run. If the call to state() returns RunSyscalls, the kernel calls
dequeue_syscalls() until it exhausts the syscalls the batch con-
troller has retained. As the batch controller returns pending syscalls,
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Figure 6: Call flow for batching and executing batched pe-
ripheral operation syscalls. When the batch controller’s state
machine is in the batching state, the kernel performs no
action with peripheral operation syscalls. Once the batch
controller switches to the execution state, the kernel initi-
ates the batched operations in quick succession, returning
results to the applications upon their completion.

the kernel completes the calls to the drivers, running the delayed
calls in quick succession.

5.3 Ahead-of-time batch controller

The implementation of the AoT batching policy adheres to the
batch controller interface. To implement the time window-based
functionality, the controller uses on-chip timer hardware. Since the
controller retains the data about withheld syscalls, it is simple to
provide the count-based batch execution behavior.

The AoT controller maintains a lookup table to determine how
to handle syscalls that the kernel sends through check_enqueue().
By default, the controller performs no special action on a syscall. It
passes through unaffected. It is easier to specify the syscalls that
require special handling. Because Tock standardizes syscalls, the
table and entries are portable across different hardware platforms.
The system designer can easily add or remove entries to the table
to configure syscall batching behavior of specific syscalls.

To make predictions for ahead-of-time batching, the batch con-
troller must know which peripheral operations are upcoming and
when those operations are scheduled to execute. Because appli-
cations interact with the alarm driver to schedule callbacks, the
controller can learn applications’ periodic schedules by inspecting
alarm driver syscalls as they pass through check_enqueue(). It
maintains a table storing these timers and their source application
and tracks the time remaining for all alarms each time the kernel



application operation(s) batch? | AoT?
accelerometer | query accelerometer X X
read temperature 4 4
biometrics read GSR v v
encrypt data v X
display refresh screen v X
loudness collect audio samples 4 4
synchronize configure radio v X
send data X X

Table 2: Evaluation applications, operations they execute,
and whether they are batchable or executable ahead of time.

calls check_enqueue(). In this implementation, we use a naive
method to correlate a peripheral operation to an alarm. It assumes
that any peripheral operation syscalls originating from the appli-
cation in the execution of its timeslice following its alarm firing is
the periodically occurring peripheral operation.

In Tock, applications have their own buffers and data they share
with the kernel to move data to and from drivers, however, interact-
ing with these at runtime without the knowledge of the application
(e.g., an ahead-of-time execution placing ADC samples in a buffer
while the application is performing analysis on the data currently in
the buffer) can yield unexpected behavior. To safely execute periph-
eral operations before an application actually requests them, we
implement a substitute process, ThinProcess, that implements the
bare minimum function of a process that the kernel never actually
schedules. The ThinProcess has its own grant memory and buffers
that the controller configures for a single application and driver at
a time. The controller executes syscalls through this structure, and
ThinProcess retains results for expedited syscalls,

Syscalls differ in how they return data to applications (e.g., a re-
turn code or a return code and a value). We encode the return behav-
ior of each ahead-of-time-eligible syscall in the ThinProcess imple-
mentation itself with another lookup table. The batch controller can
forward data back to the application depending on how the syscall
itself functions. Just as with syscall handling in check_enqueue(),
this information is portable between platforms, as Tock standard-
izes syscall behavior. Regardless of what data a syscall returns,
drivers deliver results of peripheral operations through callbacks.
Therefore, to deliver the result of a pre-executed operation once the
application actually makes the corresponding syscall, the controller
queues a callback using an application’s Process control structure.

6 Evaluation

We performed a series of evaluations to reveal the batching sys-
tem’s effects on energy consumption, latency, and system overhead.
We performed our evaluations on the Hail [1] development board
running an ARM Cortex-M4 MCU. In addition to using the onboard
hardware, we connected a 2.13-inch Waveshare e-Paper display [6]
to Hail via SPI. We used a Raspberry Pi 2B [3] and a Texas In-
struments INA219 [2] current sensor to control evaluations and to
record the total energy consumption.

6.0.1 Evaluation applications. The evaluations use applications
that execute periodically and run in response to external events.
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These applications initiate various peripheral operations. Table 2
provides an overview of the applications and their function. They
provide a mix of activities that one could find on a wearable device.
Accelerometer (accel) is a pedometer. It registers threshold noti-
fications with the accelerometer to count steps. Upon receiving a
notification, the application validates vector values to track motion.
This is a latency-sensitive operation. Biometrics (bio) monitors
biometric data. It senses temperature and galvanic skin response
(GSR). After collecting data for both, it encrypts the data. Display
(disp) refreshes the e-ink display. Loudness (loud) monitors the
loudness of the environment. It collects audio and uses it to calcu-
late the noise level. Synchronize (sync) sends data over Bluetooth.
It exchanges data with a separate, central Bluetooth device. Both
configuring the radio and sending data are latency-sensitive, as
wireless communication may be adversely affected by delay.

To run controlled, repeatable experiments involving accel, we
instead deliver interrupts to a GPIO pin on Hail using the Raspberry
Pi. These interrupts are jittered to mimic small variation in the
pace of a human walking. The application still registers for vector
threshold interrupts from the sensor and responds to the synthetic
interrupts from the Raspberry Pi by running the same code to
retrieve data from the accelerometer.

6.0.2 Batching implementations. We compare the ahead-of-time
batching policy with other implementations. Simple is an in-kernel
system that batches by monitoring the running state of processes,
batching indirectly through the CPU scheduler. When a process
is ready, the kernel waits for a period of time before running the
application, accumulating other processes that become ready to
run. Time is a fixed time window policy as described in Sec-
tion 4.4. We implement this as a batch controller (Section 5.1).
Monolithic combines the function of multiple applications into one
and performs batching within the application code. This represents
a traditionally-developed embedded application. ES-RHS [21] is a
rate-harmonizing scheduler that aims to align the phase of sched-
uled operations to perform batching. Operations that arrive must
wait until the next harmonizing period before executing, at which
point all waiting operations will execute. It performs no special
handling for latency-sensitive operations. We implement this as a
batch controller (Section 5.1).

6.1 Coordinating application execution

We first revisit the experiment from Section 1 to show the batching
system consistently coordinating applications. We use the same
applications as before. These applications still exhibit variation in
when exactly they schedule their periodic activities. Tock starts
applications sequentially, so depending on how long applications
run at startup, individual applications will naturally not align their
own periodic executions.

Figure 7 presents the results alongside the original results (from
Fig. 1). Across all three configurations, the AoT policy optimizes
for lower energy consumption and lower energy consumption vari-
ation when executing multiple applications. Across 100 trials, the
minimum and maximum energy consumption for AoT and the batch
controller framework is only slightly higher than the coordinated
scenario for the non-batching system.
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Figure 7: Coordinated and uncoordinated energy consump-
tion by applications with no batching and the minimum and
maximum energy consumption using the AoT policy. The
AoT policy successfully coordinates application activity to
reliably run efficiently.
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Figure 8: Energy consumption reduction (relative to no batch-
ing) of different batching policies when running different
sets of applications.

6.2 Energy consumption reduction

We compare the energy consumption of several application sets
running with different batching policies to gauge the effectiveness
of our batching system. We also separately evaluate the benefit of
AoT batching to energy consumption.

6.2.1 Energy efficiency of application sets. We first compare the
energy efficiency of the batching implementations by installing
different sets of applications (described in Section 6.0.1) on the
evaluation device. The applications access peripherals at different
rates. Accel accesses the accelerometer approximately every 750 ms.
Bio reads temperature every two seconds and reads GSR every four
seconds. Disp refreshes the display every second. Loud samples
every three seconds. Sync communicates with a separate device
every 20 seconds. We run each set with each batching policy in ten
5-minute trials and record energy consumption. For the baseline,
we ran the same application sets on Tock 2.0 unmodified which
does not perform batching. Using the baseline, we computed the
reduction in energy consumption and present the results in Fig. 8.

Generally, running more applications offers more opportunity for
reducing energy consumption. Energy efficiency trends upward go-
ing from two to four applications. Out of all policies, AoT performs
the best in energy efficiency. ES-RHS matches AoT in efficiency
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20 mw

ADC
10 mw

&
UART
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Figure 9: Power trace showing batching Bluetooth radio con-
figuration (UART) and ADC sampling (ADC). Wireless com-
munication is handled by a separate SoC and occurs outside
the control of the system.

except in application sets with latency-sensitive operations, like
{accel, disp, loud}. The responsive AoT policy tends to outperform
the simple strategy and the monolith, but the monolith sometimes
achieves efficiency between the AoT policy variants.

Each of the two-application sets demonstrates how well batching
improves energy efficiency in a simple scenarios of multi-tenancy.
The {disp, loud} set is the simplest of the two-application sets to
achieve energy reduction with. The batching policies must only
align the display refresh with audio sampling, so all batching strate-
gies attain notable energy efficiency. The {accel, bio} set shows that
AoT is able to improve energy efficiency over the other approaches
with the occurrence of latency-sensitive operations from accel.

The {bio, loud} set shows the effect of peripheral usage conflicts
on energy efficiency achieved by each batching policy. Both applica-
tions use the ADC, resulting in a sequential usage of the ADC (only
one sampling operation may occur at a time). Therefore, the ADC is
active for longer and the second operation might not have another
operation to run concurrently with. However, the AoT policy can
avoid this conflict by sometimes pulling forward the samplings to
make a batch with the encryption operation or temperature reading.

Notably, introducing accel to a set improves AoT’s energy effi-
ciency (e.g., {disp, loud} — {accel, disp, loud}), though the improve-
ment between {bio, disp, loud} and {accel, bio, disp, loud} is less
impactful. While other strategies allow the accelerometer query to
run by itself, AoT pre-executes another operation concurrently, as
long as one is eligible. This allows AoT to maintain a higher mean
batch size. When applications do not issue latency-sensitive opera-
tions, AoT performs similarly to ES-RHS. We further explore the
contribution of pre-execution to energy efficiency in Section 6.2.2.

Hail uses a separate SoC to perform Bluetooth connectivity. Soft-
ware running on the main MCU has limited control over the wireless
chip’s activity compared to solutions that integrate the hardware
into a single MCU. However it is possible to batch application- or
driver-initiated operations (Fig. 9). We include sync with all other
applications to show the effect on energy efficiency. We have an ex-
ternal Bluetooth-enabled device connect to and exchange data with
the evaluation device and then disconnect, as a phone would with
a wearable device. All strategies lose efficiency, but AoT achieves
an approximate 15% efficiency improvement.
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Figure 10: Reduction in energy consumption (relative to no
batching) achieved by AoT with and without pre-execution.
Pre-execution provides an improvement in energy efficiency
after adding the latency-sensitive accelerometer application.
Without it, there is a decrease in energy efficiency. The pre-
execution aspect of AoT improves energy efficiency when
running latency-sensitive applications.

6.2.2 Benefit of ahead-of-time batching. Ahead-of-time batching
enables energy-efficient execution of latency-sensitive operations.
However, if the frequency of latency-sensitive events outpaces the
frequency of batchable operations, the likelihood of batching at least
two operations decreases. Knowing what benefit the pre-execution
aspect of AoT offers and when that benefit applies helps understand
what use cases it is best suited for. We now compare the efficiency
of the AoT policy with a variant of itself that does not pre-execute
operations to isolate the benefit of pre-execution. This variant is
equivalent to the hybrid policy (Section 4.4).

We run {disp, loud}, {accel, disp, loud}, {bio, disp, loud}, and {accel,
bio, disp, loud} and provide the results in Fig. 10. The policies with
and without pre-execution perform similarly with {disp, loud} and
{bio,disp,loud}. But with pre-execution, the conservative AoT policy
improves energy efficiency going from {disp, loud} to {accel, disp,
loud} (10.2% — 14.5% for AoT cons.) and gives a less significant
gain from {bio, disp, loud} to {accel,bio,disp,loud} (17.0% — 18.6% for
AoT cons.). Without pre-execution, energy efficiency drops going
from {disp, loud} to {accel, disp, loud} and from {bio, disp, loud} to
{accel, bio, disp, loud}. Both of these cases introduce accel to the set
which adds a latency-sensitive operation to the system. This shows
that the benefit from using the AoT policy applies when the system
must handle latency-sensitive events; there is little difference in
efficiency between pre-execution on and off in sets without accel.

To explore why AoT does not improve efficiency between {bio,
disp, loud} and {accel, bio, disp, loud} as much as between {disp,
loud} and {accel, disp, loud}, we performed an experiment to see how
the frequency of latency-sensitive events affects batch size (and
consequently, energy efficiency). We deployed {disp, loud} alongside
a third application that issues timer interrupts at an approximate
rate with +5% jitter and reads the accelerometer. By varying the
interval of the timer and tracking mean batch size, we obtain Fig. 11.
As the rate of the latency-sensitive operations increases, the ratio
of latency-sensitive to batchable operations also increases.

In this setup, AoT without pre-execution consistently achieves
smaller batches. If an accelerometer operation arrives after the
display refresh, both policies can batch them together. However, if

Marshall Clyburn, Victor Cionca, and Brad Campbell

1.75 ops.
-@- AoT (resp.), pre-execution off
~®-  AoT (resp.), pre-execution on
"1\. 'y
-a
o o "
N N,
«n - -
< [ =
] N
= 1.5 ops.
c N
g - -
E o————“~v,r¢"~f"’ .\‘070.\\ Tl -
e e
1.25 ops. e
0.5:1 11 1.5:1 2:1 3:1

ratio of latency-sensitive operations
to batchable operations

Figure 11: Mean batch size of AoT with pre-execution on
and off running {disp, loud} and a synthetic application is-
suing aperiodic latency-sensitive operations. As the ratio of
latency-sensitive to batchable operations increases, the gap
in mean batch size decreases but full AoT maintains larger
mean batch sizes. Full AoT maintains a higher mean batch
size and outperforms AoT with no pre-execution. At higher
ratios, the advantage of pre-execution decreases.

the accelerometer operation arrives before the display refresh, the
policy without pre-execution must execute it alone. Meanwhile, the
full AoT policy maintains a higher mean batch size by sometimes
pulling forward the ADC sampling operation. As the ratio increases,
AoT maintains an advantage, but at much higher ratios, it will
behave similarly with neither being able to keep up with the rate of
latency-sensitive operation requests. If the rate of latency-sensitive
operations far exceeds that of batchable operations, there is only a
small additional benefit to energy efficiency.

activity | application behavior change from “default”
display updates every 10 s

loudness metering every 5 min.
temperature reading every 3 min.

GSR readings every 10 min.

send data via Bluetooth every 5 min.
display updates disabled

loudness metering every 10 min.
temperature reading every 10 min.

send data via Bluetooth every 30 min.
accelerometer event approx. every 30 s
GSR readings every five minutes
accelerometer event approx. every 800 ms
loudness metering every one minute

GSR readings disabled

temperature readings disabled

send data via Bluetooth every 30 sec.
eating | accelerometer event approx. every 5 s

default

sleeping

sitting

walking

Table 3: Variation in application behavior (Section 6.2.3). “De-
fault” describes all application behavior under all activities.
Other activities describe behavior changes from “default.”
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Figure 12: Energy consumption reduction of batching strate-
gies when running applications that change the frequency
of their activity over time.

6.2.3  Dynamic applications. Embedded applications can exhibit dy-
namic behavior: starting or stopping their periodic activity, chang-
ing the periods of their activity, or changing which peripherals they
use. To evaluate the effectiveness of the system in a more complex
scenario, we alter the behavior of the wearable applications ac-
cording to traces of a participant’s everyday activity in the labeled
open wrist activity dataset, CAPTURE-24 [12]. We use six hours of
data that includes a total of: 70 minutes of sleeping, 128 minutes of
sitting or office work, 46 minutes of eating, 47 minutes of walking,
46 minutes of eating, and 22 minutes of household chores. These
activities are not contiguous. Applications modify their behavior
according to the current activity. Table 3 details their behavior.
We run the applications in six-hour trials with each batching
policy and compare their efficiency in Fig. 12. The result is con-
sistent with the experiment using application sets. AoT maintains
the best efficiency among these approaches when using the conser-
vative window, and it achieves efficiency similar to ES-RHS when
using the shorter, responsive window. This shows that the batching
system and AoT can adapt to a common, dynamic use case.

6.3 Impact to applications

Although the AoT policy can execute latency-sensitive operations
efficiently, it delays other batchable requests. To understand the
impact the policy has on applications, we characterize the latency
imposed on individual operations and the overhead latency of the
batching logic. We instrument Tock and the batching code to profile
the system and deploy the {accel, bio, disp, loud} set.

Figure 13 gives the CDF for latency experienced by operations
withheld by batching under AoT and ES-RHS policies. This latency
includes the time spent awaiting execution and the time the batch
controller spends processing the operation (a small fraction of the
total time). In this experiment, the batching window durations for
conservative AoT and ES-RHS are equal at 1 second. The batching
window duration for responsive AoT is 520 ms.

The CDF for AoT is approximately uniform, notably different
from ES-RHS. This is due to the aperiodic operations for accel
causing batches to also execute aperiodically. This occurs both with
the full AoT policy and the AoT policy without pre-execution. This
implementation of ES-RHS immediately executes latency-sensitive
operations, leaving batched operations unaffected.
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Figure 13: Batching latency while running the {accel, bio, disp,
loud} set. Handling aperiodic operations causes the CDF for
AoT to take on a nearly uniform distribution.

Though both policies upper-bound delay, AoT imposes a less
predictable delay than ES-RHS. ES-RHS dictates a harmonizing
interval, and as long as an application does not change its sched-
uling period, its operation will experience the same delay before
execution. However, because AoT makes use of aperiodic events,
batches may execute earlier than its window duration. The delay
will be between zero and the duration of the window.

A fraction of time in these measurements is the time it takes for
the kernel and batch controller to handle the peripheral operation.
Every syscall passes through the batch controller, so every syscall
will have this time added to its execution. When the AoT batch
controller transparently passes a syscall, it adds about 3.15 ps to its
execution time. When the AoT batch controller withholds a syscall,
it adds 126 ps before returning to the application.

Summarily, AoT trades off predictability in delay to accommodate
latency-sensitive operations and to improve energy efficiency. This
has the additional effect of improving the latency of batched opera-
tions over an approach which does not consider latency-sensitive
operations for batching, though this is dependent on the expected
frequency of aperiodic events compared to periodic events.

6.4 System overhead

The batching system increases binary size and memory usage. Since
embedded hardware varies widely, what may be a small cost to
one device may overwhelm another. We evaluate overhead with
respect to our evaluation platform, which has 64 KB of SRAM and
512 KB of storage. These specifications are representative of low-
power embedded systems. Table 4 gives the code size of different
batching implementations. The AoT policy is the largest, requiring
an additional 1,956 B. At runtime, AoT uses 304 B of RAM, ES-RHS
uses 200 B, the fixed time window uses 204 B, and simple batching
uses 8 B. Hardware specifications in the embedded space varies,
but our evaluation platform easily accommodates these changes.

7 Discussion

Sensor- and peripheral-rich platforms, like wearables and building
monitoring infrastructure, can benefit greatly from controlling en-
ergy usage through peripheral operation batching. We specifically
demonstrate its applicability to a low-power wearable platform, but



implementation add. code size | total binary size
simple batching 896 B 114.7 KB (+0.78%)
time window batching | 830 B +592B | 116.5 KB (+1.55%)
ES-RHS 880B + 608 B | 116.6 KB (+1.70%)

AoT batching 8380 B + 1076 B | 116.6 KB (+1.71%)

Table 4: Code size increases for batching. For the time win-
dow and AoT policies, the first size is due to the batching
framework; the second is due to the policy implementation.

any device with a breadth of sensing, processing, or communication
hardware can leverage this technique effectively.

The ahead-of-time policy we present can serve a general-purpose
use case, but two scenarios we do not cover in depth that may be
important for system designers to consider are peripheral usage
conflicts and redundant requests. In case of a conflict, a policy could
retry on behalf of applications or determine which to serve based on
some priority. And if applications submit identical requests, a policy
could make a single request to the peripheral driver and return the
result to both applications. This more sophisticated handling would
come at the cost of additional code and memory usage.

Exerting system-level control for batching presents possibilities
for additional research directions. While embedded applications
tend to have simple workflows, factors other than time or a sin-
gle event can trigger peripheral-bound activity. Applications may
depend on the activity of others or implement more dynamic exe-
cution workflows. A deeper analysis of application behavior could
improve both energy efficiency and latency in these cases. Addi-
tionally, considering other properties—such as peripheral operation
duration or application priority—and accordingly adapting window
durations or adding entirely new policy rules could improve energy
efficiency, latency, or feasibility of batching for particular use cases.

8 Conclusion

As the importance of low-power embedded systems grows and
multi-tenancy expands use cases, energy management on these de-
vices must continue to improve for sustainable operation. The batch-
ing system we present coordinates applications in multi-tenant
systems to control energy usage, enabling extended operation or
expanded utility. Its adaptability makes it suitable for a variety of
embedded hardware, and its system-level operation means applica-
tions remain unencumbered with the mechanics of batching. It can
serve many use cases well, but having a deeper understanding of
application behavior may serve more complex applications. This
system-level energy management technique can provide a strong
foundation to build on. To encourage collaboration and repeatabil-
ity, we make our implementation and evaluation artifacts public
upon publication.
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